| 研究生: |
徐震宇 Chen-Yu Hsu |
|---|---|
| 論文名稱: |
透水瀝青混凝土鋪面滲透保水性能及熱行為之研究 THE STUDY OF PERMEABILITY, WATER-HOLDING, AND THERMAL CONDUCTIVITY IN POROUS ASPHALT CONCRETE |
| 指導教授: |
林志棟
Jyh-Dong Lin |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 透水性鋪面 、熱學行為 、入滲 、保水 、多孔隙瀝青混凝土 、X光電腦斷層掃描 |
| 外文關鍵詞: | Permeable Pavement, Thermal Conductivity, Infiltration, Water Holding, Porous Asphalt Concrete, X-ray Computed Tomography |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究由材料觀點針對透水性鋪面滲透係數、熱學性質、入滲及保水等性能進行綜合評估分析與探討;於實驗室先行針對面層材料熱學性質、滲透性能之量測分析其基本性質,並藉由現地透水性鋪面施作案例,量測實際鋪面熱行為及保水量,並以統計分析方法評估其性能。
由實驗室量測之結果,傳統密級配瀝青混凝土熱傳導係數約1.3~1.8W/mK,而多孔隙瀝青混凝土量測結果由於孔隙率增加至20%,使得熱傳導係數降低至0.4~0.9 W/mK,但多孔隙瀝青混凝土與密級配瀝青混凝土皆由相同材料組成,孔隙的增加使熱容量降低、表面積增加,當獲得熱能時,溫度會有迅速升高之情形,於實驗室模擬及現地量測之結果顯示,多孔隙瀝青混凝土表面溫度較密級配瀝青混凝土高約4~6℃,由於多孔隙瀝青混凝土熱傳導係數低,其熱容量亦較低,因此白天吸收的熱能量較少,夜晚平均熱輸出量亦較密級配瀝青混凝土少,於鋪面下方4公分夜晚溫度較密級配瀝青混凝土約低1℃。
面層多孔隙瀝青混凝土材料之滲透係數,車轍試體滲透係數高於馬歇爾試體約10~40%,顯示尺寸大小或壓實方式對滲透係數有所影響,而模擬坡度10%對滲透係數之影響最大約減少10%的滲透能力;本研究中提出以鋪面材料基本性質包括各層厚度、孔隙率、滲透係數及鋪面各層中最低之滲透係數,並利用區域降雨強度公式,可使工程師利用簡易計算方式概估保水量及延緩表面逕流時間;利用實驗區模擬降雨進行保水量簡易計算公式驗證,總雨量、降雨延時及保水量,與簡易公式計算結果較符合。
實驗區透水瀝青混凝土鋪面歷經9年使用後進行鋪面更新,並於更新過程中針對鋪面各層滲透係數進行量測,結果顯示於面層下方各層滲透係數與初始鋪設之狀態並無太大差異,僅於面層產生孔隙阻塞現象,針對鋪面更新前之面層孔隙率,利用電腦斷層掃瞄分析結果顯示,孔隙阻塞約於表面至下方20mm,最低空隙率降至3%,使原始滲透係數2.2*10-1cm/sec降低至1.2*10-3cm/sec;針對鋪面更新前、後之面層多孔隙瀝青混凝土以電腦斷層掃瞄進行孔隙分布分析,發現滾壓可能造成表面至深度20mm孔隙率降低約4%之現象。
由於面層之滲透能力與排除降雨量有直接關係,而且鋪面各層中最低之滲透係數影響長期的直接滲透保水量,因此影響透水性鋪面滲透及保水能力主要因素為面層滲透係數及鋪面各層中最低之滲透係數。
The objective of this study was to assess the permeability and the thermal conductivity in porous asphalt concrete. PACs mixed in the laboratory and paved on the test section were evaluated. The thermal conductivity performed in the laboratory in PAC with 20% of porosity in comparison with parallel dense-graded asphalt concrete were 0.4-0.9 W/mK and 1.3-1.8 W/mK, respectively; the temperature profile performed in the laboratory and field show a similar trend that the temperature in the surface portion of PAC was 4-6℃ higher than that of DGAC. This can attribute that the higher porosity in PAC was reducing the capacity of heat transfer across materials and thus the heat was accumulating on the surface of pavement structure. The field data also show that the temperature in 4cm underneath the surface in PAC was 1℃ lower than that of DGAC. It has to be noted that both PAC and DGAC were designed and mixed with same sources of aggregates and binder.
The permeability performed in the laboratory between Marshall compacted and wheel track specimens were evaluated and the wheel track specimen show 10-40% higher in that by the constant head permeability test. Additionally, a modified permeability test with 10% of pavement cross slope was found 10% reduction in permeability. The field permeability performed in the test section show a reduction from 2.2*10-1 to 1.2*10-3 cm/sec after nine years of service. The analysis in conjunction with X-ray Computed Tomography indicate that the clogging of PAC occurred in 20mm depth topdown where the porosity was reducing down to 3%. It was also found that the effect of roller compaction can cause 4% reduction in porosity on the same depth topdown. The test section was then excavated and it was found that permeability of base and subbase layers remained the same capacity in comparison with that in nine years ago. Hence, it can conclude that the porosity of surface layer can be the dominant parameter in term of overall capability of permeable pavement.
Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70(3), 295-310.
Asaeda, T., & Ca, V. T. (2000). Characteristics of permeable pavement during hot summer weather and impact on the thermal environment. Building and Environment, 35(4), 363-375.
Asaeda, T., Ca, V. T., & Wake, A. (1996). Heat storage of pavement and its effect on the lower atmosphere. Atmospheric Environment, 30(3), 413-427.
Bauters, T., DiCarlo, D., Steenhuis, T., & Parlange, J.-Y. (2000). Soil water content dependent wetting front characteristics in sands. Journal of Hydrology, 231, 244-254.
Brazel, A., Selover, N., Vose, R., & Heisler, G. (2000). The tale of two climates-Baltimore and Phoenix urban LTER sites. Climate Research, 15(2), 123-135.
CARNIELO, E., & ZINZI, M. (2013). Optical and thermal characterisation of cool asphalts to mitigate urban temperatures and building cooling demand. Building and Environment, 60, 56-65.
County, P. G. s. (1999). Low-impact development design strategies: An integrated design approach. Department of Environmental Resources, Programs and Planning Division, Prince George’s County, Maryland.
Deosthali, V. (2000). Impact of rapid urban growth on heat and moisture islands in Pune City, India. Atmospheric Environment, 34(17), 2745-2754.
EPA, U. (2000). Low impact development (LID), A literature review. United States Environmental Protection Agency.
Ferguson, B., Fisher, K., Golden, J., Hair, L., Haselbach, L., Hitchcock, D., Waye, D. (2008). Reducing Urban Heat Islands: Compendium of Strategies-Cool Pavements.
Haase, D., & Nuissl, H. (2007). Does urban sprawl drive changes in the water balance and policy?: The case of Leipzig (Germany) 1870–2003. Landscape and Urban Planning, 80(1), 1-13.
Hanson, J. L., Neuhaeuser, S., & Yesiller, N. (2004). Development and calibration of a large-scale thermal conductivity probe. Geotechnical Testing Journal, 27(4), 393.
Haselbach, Liv. (2009). Pervious Concrete and Mitigation of the Urban Heat Island Effect. Paper presented at the Transportation Research Board 88th Annual Meeting.
Hasse, J. E., & Lathrop, R. G. (2003). Land resource impact indicators of urban sprawl. Applied Geography, 23(2), 159-175.
Hou, L., Feng, S., Ding, Y., Zhang, S., & Huo, Z. (2008). Experimental study on rainfall-runoff relation for porous pavements. Hydrology Research, 39(3), 181.
Jauregui, E. (1997). Heat island development in Mexico City. Atmospheric Environment, 31(22), 3821-3831.
Karaca, M., Tayanç, M., & Toros, H. n. (1995). Effects of urbanization on climate of Istanbul and Ankara. Atmospheric Environment, 29(23), 3411-3421.
Kato, S., & Yamaguchi, Y. (2005). Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sensing of Environment, 99(1), 44-54.
Khan, M. (2002). Factors affecting the thermal properties of concrete and applicability of its prediction models. Building and Environment, 37(6), 607-614.
Ksaibati, K., & Yavuzturk, C. (2002). Assessment of Temperature Fluctuations in Asphalt Pavements Due to Thermal Environmental Conditions Using a Two-dimensional Transient Finite Difference Approach.
Lin, T.-P., Ho, Y.-F., & Huang, Y.-S. (2007). Seasonal effect of pavement on outdoor thermal environments in subtropical Taiwan. Building and Environment, 42(12), 4124-4131.
Lin, J.-D., Hsu, C.-Y., Adhitana Paramitha, P., Lee, J.-C. (2013), The Study of Pavement Surface Temperature Behavior of Different Permeable Pavement Materials during Summer Time. Advanced Materials Research, 723, 711-720.
Lin, J.-D., Hsu, C.-Y., Su, Y.-M. (2013). Field Assessment in Permeability and Surface Run-Off of Permeable Pavement. Applied Mechanics and Materials, 361-363, 1503-1506.
Lu, X., Sandman, B., & Redelius, P. (2011). Aging Characteristics of Polymer Modified Binders in Porous Asphalt Pavements. Paper presented at the 11th International Conference on Asphalt Pavements 2010 (ISAP Nagoya 2010), Japan.
Mamlouk, M. S., Witczak, M. W., Kaloush, K. E., & Hasan, N. (2005). Determination of Thermal Properties of Asphalt Mixtures. Journal of Testing and Evaluation, 33(2).
Pomerantz, M., Akbari, H., Chen, A., Taha, H., & Rosenfeld, A. (1997). Paving materials for heat island mitigation: Lawrence Berkeley National Lab., Berkeley, CA (United States).
Pomerantz, M., Pon, B., Akbari, H., & Chang, S. C. (2000). The effect of pavements’ temperatures on air temperatures in large cities. Publication No. LBNL-43442.
Razavi, M. R. (2006). Characterization of microstructure and internal of sand using X-ray computed tomdisplacement field ography. Washington State University.
Rees, S., Zhou, Z., & Thomas, H. (2001). The influence of soil moisture content variations on heat losses from earth-contact structures: an initial assessment. Building and Environment, 36(2), 157-165.
Shin, A. H.-C., & Kodide, U. (2012). Thermal conductivity of ternary mixtures for concrete pavements. Cement and Concrete Composites, 34(4), 575-582.
Stempihar, Jeffrey J, Pourshams-Manzouri, Tina, Kaloush, Kamil E, & Rodezno, Maria Carolina. (2012). Porous Asphalt Pavement Temperature Effects for Urban Heat Island Analysis. Transportation Research Record: Journal of the Transportation Research Board, 2293(1), 123-130.
Synnefa, A., Karlessi, T., Gaitani, N., Santamouris, M., Assimakopoulos, D., & Papakatsikas, C. (2011). Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate. Building and Environment, 46(1), 38-44.
Synolakis, C., Leahy, R., Singh, M., Zhou, Z., Song, S., & Shannon, D. (1993). Development of an asphalt core tomographer.
Tan, S., & Fwa, T. F. (1992). Influence of pavement materials on the thermal environment of outdoor spaces. Building and Environment, 27(3), 289-295.
Velazquez-Lozada, A., Gonzalez, J. E., & Winter, A. (2006). Urban heat island effect analysis for San Juan, Puerto Rico. Atmospheric Environment, 40(9), 1731-1741.
Viswanathan, B., Volder, A., Watson, W. T., & Aitkenhead-Peterson, J. A. (2011). Impervious and pervious pavements increase soil CO 2 concentrations and reduce root production of American sweetgum, Urban Forestry & Urban Greening, 10(2), 133-139.
Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370-384.
Yamamoto, Y. (2006). Measures to mitigate urban heat islands. Science and Technology Trends Quarterly Review, 18(1), 65-83.
Yavuzturk, C., Ksaibati, K., & Chiasson, A. (2005). Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. Journal of Materials in Civil Engineering, 17(4), 465-475.
Zipperer, W. C., Sisinni, S. M., Pouyat, R. V., & Foresman, T. W. (1997). Urban tree cover: an ecological perspective. Urban Ecosystems, 1(4), 229-246.
川口基広、建部英博 (1997),透水性舗装に関する基礎的研究,第32号B, pp. 77-87,愛知工業大学研究報告。
內政部建築研究所 (2012),「綠建築評估手冊-基本型」,第一版,內政部建築研究所,新北市。
交通部 (2009),公路排水設計規範,交通部。
关彦斌 (2008),「大孔隙沥青路面的透水机理及结构设计研究」,博士論文,北京交通大学,北京。
危時秀 (2003),「普通混凝土熱傳導性質之研究」,碩士論文,中原大學,桃園。
西山哲、大西有三、矢野隆夫、山本剛、和田實 (2010),「透水性舗装の洪水抑制機能に関する研究」,材料,59 (7),560-566。
佐竹浩幸、建部英博. (2007). 「透水性舗装の夏季温度上昇抑止ならびに騒音低下効果に関する研究」,愛知工業大学研究報告, B(42), 101-108。
吳宗騂 (2007). 「透水性鋪面溫度行為模式之初步探討」,碩士論文,逢甲大學,台中。
吳政松 (2005),「透水鋪面對工程環境之影響效益分析」,碩士論文,國立中央大學,桃園。
李茂森 (1985),「透水性沥青路面」,中国建筑工业出版社,中國。.
林宏偉 (2003),「瀝青混凝土鋪面加鋪作業溫降量測之開放交通時機研究」,碩士論文,國立中央大學,桃園。
林志棟 (2005). 「建築基地保水滲透技術設計規範與法制化之研究」,內政部建築研究所,台北。
林俊宏 (2006),「粉體在不同含水量及乾單位重下之熱傳導係數」,碩士論文,國立中央大學,桃園。
林炯明 (2010)「都市熱島效應之影響及其環境意涵」,環境與生態學報,3(1),第1-15頁。
林鐵雄 (2006).,「高反照率涼鋪面與都市熱島效應」,義守大學土木與生態工程學系技術報告。
社団法人日本道路協会 (2007),「透水性舗装ガイドブック2007」,社団法人日本道路協会,日本。
邱皓政 (2007),「量化研究與統計分析-SPSS中文視窗版資料分析範例解析」,五南圖書出版股份有限公司,台北市。
施國欽 (1996),「大地工程學 (一)-土壤力學篇」,第五版,文笙書局,台北。
柯亙重、張書芸 (2004),「高雄地區夏季地表氣溫分布之觀測解析」,環境與世界,(9),83-106頁。
徐震宇 (2008)「不同透水性鋪面材料對鋪面溫度影響之探討」,碩士論文,國立中央大學,桃園。
張子瑩 (2010),「應用遙測影像於地表熱通量平衡之研究」,博士論文,國立中央大學,桃園。
張苑菱 (2010),「台中市都市熱島效應與土地覆遞影響之研究」,碩士論文,逢甲大學,台中市。
張家銘 (2006),「以熱探針法量測大地材料熱傳導係數之適用性」,碩士論文,國立中央大學,桃園。
張簡士彥 (2009),「都市熱島效應改善之基礎研究-熱物理性質對表面溫度之影響」,碩士論文,義守大學,高雄市。
莊克士 (2001),「醫學影像物理學」,合記圖書出版社,台北市。
郭彦群 (2008),「半透式路面结构设计及应用」,交通标准化,(8),第62-164頁。
陳志恆、楊顯整 (2005),「節能材料之開發與使用技術」,工業污染防治,(94),第35-145頁。
陳富子 (1989),「熱傳遞學」,曉園出版社,台北市。
菊池俊浩 (2004)「車道透水性舗装実用化に向けての取組み」特集・透・排水性舗装,アスファルト,(47),第20-26頁。
黃宇菘 (2005),「戶外鋪面對建築外部熱環境影響之研究—以高速公路南投服務區為例」,碩士論文,朝陽科技大學,台中 。
黃博仁 (2001),「排水性瀝青混合料鋪面試驗路段之成效評估」,碩士論文,國立中央大學,桃園。
黃慧敏 (2005)「鋪面熱島效應模式建立及應用研究」,碩士論文,國立臺灣海洋大學,基隆市。
楊亮 (2008),「透水性路面材料緩解廣州水浸街現象的研究」,山西建筑, (26),第285-286頁。
楊家愷 (2006)「應用遙感探測方法探討中尺度城鄉土地利用對環境溫度之影響」,碩士論文,國立宜蘭大學,宜蘭縣。
葉銘欽 (2011),「以微觀影像解析多孔隙瀝青混凝土耐久特性之研究」,博士論文,國立中央大學,桃園。
董祥、方新財 (2009),「透水性路面的鋪面材料與工程應用」,筑路機械與施工機械化, (06),第39-42頁。
鄒克萬、黃書偉 (2007),「都市土地利用變遷對自然環境衝擊之空間影響分析」, JOURNAL OF GEOGRAPHICAL SCIENCE,(48),第1-18頁。
榮泰生 (2006),「SPSS與研究方法」,五南圖書出版股份有限公司,台北市。
歐陽嶠暉 (2001),「都市環境學」,詹氏書局,台北市。
杨亮 (2008)「透水性路面材料缓解广州水浸街现象的研究」,山西建筑,34(26),第285-286頁。
贾璐、孙立军、黄立葵、秦健 (2007),「沥青路面温度场数值预估模型」,同济大学学报 (自然科学版),第1039-1043頁。
行政院公共工程委員會全球資訊網網頁,http://www.pcc.gov.tw/pccap2/TMPLfronted/ChtIndex.do?site=002
維基百科網頁,http://en.wikipedia.org/wiki/Hounsfield_scale