| 研究生: |
池文德 Wwn-De Chi |
|---|---|
| 論文名稱: |
過錳酸鉀比色法應用於乙二醇濃度半定量分析之方法開發 Development of a Semi-Quantitative Method for Ethylene Glycol Concentration Analysis Using Potassium Permanganate Colorimetry |
| 指導教授: |
王柏翔
Po-Hsiang Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 過錳酸鉀 、乙二醇 、比色分析 、PET 酵素降解 、速率模型 、高通量分析 、塑膠回收 |
| 外文關鍵詞: | Potassium permanganate, ethylene glycol, colorimetric analysi, PET enzymatic degradation, rate-based model, high-throughput analysis, plastic recycling |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在建立一套以過錳酸鉀(KMnO₄)為氧化劑的比色法,用於半定量分析聚對苯二甲酸乙二酯(PET)酵素降解產物中的乙二醇(EG)濃度。由於 EG 具良好水溶性,可與不溶性副產物(如對苯二甲酸,TPA)經簡單物理方式分離,取得液相後即可進行比色反應,無需繁複前處理。
本法使用分光光度計監測 KMnO₄ 與 EG 反應過程中的吸光度變化,以反應初期 0–300 秒內的變化速率(ΔA/Δt)作為濃度推估依據。經系統性條件優化後,確定以 pH 12、KMnO₄ 終濃度 2.5 mM、偵測波長 570 nm 為最佳設定,並建立下列回歸模型:
ΔA/Δt×10^4=0.0565x^2-1.1245x-0.1291 (R2=0.997)
模型適用於 EG 濃度範圍 0.25–9.00 M,可作為濃度變化趨勢的快速評估工具,誤差多數低於 10%。在低於 0.25 M 的情況下,因反應訊號微弱、雜訊影響顯著,僅建議作為偵測下限參考;高濃度樣品則可能受平台效應影響,預測準確度略降。與高效能液相層析(HPLC)相比,本法具備操作簡便、試劑成本低、反應時間短(約10分鐘)等優點,特別適合應用於 PET 酵素反應中之條件篩選、反應效率監控與樣品快速篩檢。
整體而言,本研究所開發之比色分析法結合 EG 水溶性特性與速率模型,提供一項具高通量潛力之簡便分析策略,適用於 PET 解聚研究中的 EG 含量估算與反應趨勢判斷。
This study aimed to develop a rapid and semi-quantitative colorimetric method using potassium permanganate (KMnO₄) to estimate the concentration of ethylene glycol (EG), a major product of polyethylene terephthalate (PET) enzymatic depolymerization. Due to its high water solubility, EG can be physically separated from poorly soluble byproducts such as terephthalic acid (TPA), allowing direct analysis of the liquid phase without complex pretreatment.
By monitoring the absorbance changes during the reaction between KMnO₄ and EG using a spectrophotometer, the initial rate of absorbance change within the first 0–300 seconds (ΔA/Δt) was used as the indicator for concentration estimation. After systematic optimization, the ideal reaction conditions were determined to be pH 12, 2.5 mM KMnO₄, and a detection wavelength of 570 nm. The following regression model was established:
ΔA/Δt×10^4=0.0565x^2-1.1245x-0.1291(R2=0.997)
The model is applicable to EG concentrations ranging from 0.25 to 9.00 M and serves as a tool for rapid estimation of concentration trends, with most prediction errors below 10%. For samples below 0.25 M, weak signal response and noise interference reduce reliability, while high-concentration samples may exhibit saturation effects that slightly reduce accuracy.
Compared to high-performance liquid chromatography (HPLC), this method offers advantages such as simple operation, low reagent cost, and short analysis time (within 10 minutes), making it particularly suitable for condition screening, reaction monitoring, and preliminary evaluation in PET enzymatic degradation studies.
Overall, the proposed colorimetric method leverages the water solubility of EG and a rate-based kinetic model to provide a convenient and scalable analytical platform for estimating EG content and evaluating reaction progression in PET depolymerization systems.
參考文獻
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
Ghosh, S., Biswas, M., & Roy, M. (2019). An overview of analytical techniques for plastic degradation and microplastic detection. Environmental Chemistry Letters, 17(4), 1901–1920.
Mohammadi, A., & Es'haghi, Z. (2021). A spectrophotometric method for rapid determination of ethylene glycol using potassium permanganate. Journal of Analytical Science and Technology, 12(1), 1–8.
United Nations (UN). (2015). Transforming our world: The 2030 Agenda for Sustainable Development.
Biron, M. (2012). Thermoplastics and thermoplastic composites: Technical information for plastics users (2nd ed.). Elsevier.
Tournier, V., Topham, C. M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., ... & Marty, A. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580(7802), 216–219.
Grand View Research. (2021). Polyethylene Terephthalate (PET) Market Size, Share & Trends Analysis Report By Product (Bottles, Films & Sheets), By Application (Packaging, Automotive, Electrical & Electronics), By Region, And Segment Forecasts, 2021 – 2028.
Chen, Y., Ma, X., & Zheng, D. (2021). Advances in chemical recycling of PET: Hydrolysis and catalytic depolymerization. Journal of Environmental Chemical Engineering, 9(5), 105632.
Singh, R. K., Ruj, B., & Sadhukhan, A. K. (2022). Recent advances in enzymatic depolymerization of PET: Biocatalysts, mechanisms and green process engineering. Bioresource Technology, 347, 126700.
Bhunia, K., Dutta, P., & Saha, D. (2001). Potassium permanganate oxidation for rapid determination of organics in water samples. Analytical Chemistry, 73(6), 1152–1157.
Jiang, D., Zhang, W., & Zhang, J. (2015). Kinetic study on the oxidation of ethylene glycol by potassium permanganate in acidic and basic media. Journal of Chemical Education, 92(2), 369–374.
permanganate. Journal of Analytical Science and Technology, 12(1), 1–8.
Christian, G. D. (2014). Analytical Chemistry (7th ed.). John Wiley & Sons.
Atkins, P., & de Paula, J. (2018). Physical chemistry (10th ed.). Oxford University Press.
Laidler, K. J. (1987). Chemical kinetics (3rd ed.). Harper & Row.
International Union of Pure and Applied Chemistry (IUPAC). (1997). Compendium of chemical terminology: The Gold Book (2nd ed.). Blackwell Scientific Publications.
Zhong-Johnson, E. Z. L., Voigt, C. A., & Sinskey, A. J. (2021). An absorbance method for analysis of enzymatic degradation kinetics of poly(ethylene terephthalate) films. Scientific Reports, 11(1), 928.
Friedman, M., & Sunder Raj, S. (1996). Permanganate oxidation of polyhydroxy compounds: Reaction pathways and applications. Journal of Agricultural and Food Chemistry, 44(5), 1446–1455.
Pavia, D. L., Lampman, G. M., & Kriz, G. S. (2014). Introduction to spectroscopy (5th ed.). Cengage Learning.
Dadgar, A., & Jones, R. D. (2005). Determination of low-molecular-weight alcohols in aqueous samples by HPLC with refractive index detection. Journal of Chromatographic Science, 43(8), 399–402.
Kourkoumelis, N., & Tzaphlidou, M. (2005). A comparative study of colorimetric methods for the determination of alcohols. Microchemical Journal, 80(2), 123–130.
Shukla, V., Sharma, V., & Bhattacharya, A. (2022). Quantification of PET hydrolysis products using internal standard HPLC method. Polymers, 14(7), 1421.