跳到主要內容

簡易檢索 / 詳目顯示

研究生: 池文德
Wwn-De Chi
論文名稱: 過錳酸鉀比色法應用於乙二醇濃度半定量分析之方法開發
Development of a Semi-Quantitative Method for Ethylene Glycol Concentration Analysis Using Potassium Permanganate Colorimetry
指導教授: 王柏翔
Po-Hsiang Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 57
中文關鍵詞: 過錳酸鉀乙二醇比色分析PET 酵素降解速率模型高通量分析塑膠回收
外文關鍵詞: Potassium permanganate, ethylene glycol, colorimetric analysi, PET enzymatic degradation, rate-based model, high-throughput analysis, plastic recycling
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在建立一套以過錳酸鉀(KMnO₄)為氧化劑的比色法,用於半定量分析聚對苯二甲酸乙二酯(PET)酵素降解產物中的乙二醇(EG)濃度。由於 EG 具良好水溶性,可與不溶性副產物(如對苯二甲酸,TPA)經簡單物理方式分離,取得液相後即可進行比色反應,無需繁複前處理。
    本法使用分光光度計監測 KMnO₄ 與 EG 反應過程中的吸光度變化,以反應初期 0–300 秒內的變化速率(ΔA/Δt)作為濃度推估依據。經系統性條件優化後,確定以 pH 12、KMnO₄ 終濃度 2.5 mM、偵測波長 570 nm 為最佳設定,並建立下列回歸模型:
    ΔA/Δt×10^4=0.0565x^2-1.1245x-0.1291 (R2=0.997)
    模型適用於 EG 濃度範圍 0.25–9.00 M,可作為濃度變化趨勢的快速評估工具,誤差多數低於 10%。在低於 0.25 M 的情況下,因反應訊號微弱、雜訊影響顯著,僅建議作為偵測下限參考;高濃度樣品則可能受平台效應影響,預測準確度略降。與高效能液相層析(HPLC)相比,本法具備操作簡便、試劑成本低、反應時間短(約10分鐘)等優點,特別適合應用於 PET 酵素反應中之條件篩選、反應效率監控與樣品快速篩檢。
    整體而言,本研究所開發之比色分析法結合 EG 水溶性特性與速率模型,提供一項具高通量潛力之簡便分析策略,適用於 PET 解聚研究中的 EG 含量估算與反應趨勢判斷。


    This study aimed to develop a rapid and semi-quantitative colorimetric method using potassium permanganate (KMnO₄) to estimate the concentration of ethylene glycol (EG), a major product of polyethylene terephthalate (PET) enzymatic depolymerization. Due to its high water solubility, EG can be physically separated from poorly soluble byproducts such as terephthalic acid (TPA), allowing direct analysis of the liquid phase without complex pretreatment.
    By monitoring the absorbance changes during the reaction between KMnO₄ and EG using a spectrophotometer, the initial rate of absorbance change within the first 0–300 seconds (ΔA/Δt) was used as the indicator for concentration estimation. After systematic optimization, the ideal reaction conditions were determined to be pH 12, 2.5 mM KMnO₄, and a detection wavelength of 570 nm. The following regression model was established:
    ΔA/Δt×10^4=0.0565x^2-1.1245x-0.1291(R2=0.997)
    The model is applicable to EG concentrations ranging from 0.25 to 9.00 M and serves as a tool for rapid estimation of concentration trends, with most prediction errors below 10%. For samples below 0.25 M, weak signal response and noise interference reduce reliability, while high-concentration samples may exhibit saturation effects that slightly reduce accuracy.
    Compared to high-performance liquid chromatography (HPLC), this method offers advantages such as simple operation, low reagent cost, and short analysis time (within 10 minutes), making it particularly suitable for condition screening, reaction monitoring, and preliminary evaluation in PET enzymatic degradation studies.
    Overall, the proposed colorimetric method leverages the water solubility of EG and a rate-based kinetic model to provide a convenient and scalable analytical platform for estimating EG content and evaluating reaction progression in PET depolymerization systems.

    目錄 摘 要 i Abstract ii 致 謝 iv 圖目錄 viii 表目錄 x 第一章 前 言 1 1.1研究背景 1 1.2研究動機與目的 1 第二章 文獻回顧 3 2.1聚對苯二甲酸乙二醇 3 2.1.1 PET產品使用與廢棄後處理現況 4 2.1.2 PET水解反應 5 2.1.3 PET產品於環境中的降解方式 6 2.2過錳酸鉀氧化法 7 2.2.1過錳酸鉀氧化法於PET降解產物EG之應用 8 2.2.2紫外-可見光分光光度計於 PET 降解產物之應用 8 2.2.3 近期酶解反應之吸光度偵測應用與限制 9 2.3 HPLC 用於檢測醇類之應用概述 10 第三章 材料與方法 12 3.1實驗架構 12 3.2實驗材料與設備 13 3.2.1實驗藥品 13 3.2.2實驗設備 13 3.3 EG 樣品濃度與實驗條件設計 14 3.3.1 乙二醇標準曲線與濃度範圍設定 14 3.3.2 過錳酸鉀吸光反應範圍評估 15 3.4特性分析 17 3.4.1 分光光度計之檢測原理與波長選擇依據 17 3.4.2 酸鹼條件下反應吸光行為與穩定性探討 18 3.4.3 EG 標準曲線建立與線性分析 19 第四章 結果與討論 20 4.1 檢測方法初步驗證與條件優化 20 4.1.1 KMnO₄ 濃度對比色反應的影響與觀察 20 4.1.2 比色平台之反應條件篩選與最適化結果分析 22 4.2 動力學分析與反應速率探討 24 4.2.1 各條件下之吸光趨勢比較 24 4.2.2 動力學速率參數與濃度依賴性分析 34 4.3 預測濃度公式驗證與誤差分析 37 4.4 模型預測誤差來源探討與應用限制說明 39 4.5 過錳酸鉀比色法與 HPLC比較 40 第五章 結論與建議 42 5.1 結論 42 5.2 建議 43 參考文獻 44 圖目錄 圖 1.聯合國永續發展目標 2 圖 2.全球廢棄塑膠處理 5 圖 3.實驗架構 12 圖 4.高濃度 KMnO₄(10 mM / 25 mM)條件下之比色反應觀察圖 21 圖 5.低濃度 KMnO₄(5 mM / 2.5 mM)條件下之比色反應觀察圖 21 圖 6. 96 孔盤比色反應之吸光變化總覽圖(篩選階段:KMnO₄ = 25 mM / 10 mM,pH 3、7、12)。X 軸為反應時間(秒),Y 軸為吸光度。 23 圖 7.96 孔盤比色反應之吸光變化總覽圖(優化階段:KMnO₄ = 5.0 / 2.5 mM,pH 3、12)。X 軸為反應時間(秒),Y 軸為吸光度(Absorbance)。 23 圖 8. pH 3、470 nm 下 KMnO₄(2.5 mM)與不同濃度 EG 反應之吸光變化趨勢 26 圖 9. pH 3、470 nm 下 KMnO₄(5.0 mM)與不同濃度 EG 反應之吸光變化趨勢 27 圖 10. pH 12、470 nm 下 KMnO₄(2.5 mM)與不同濃度 EG 反應之吸光變化趨勢 28 圖 11 .pH 12、470 nm 下 KMnO₄(5.0 mM)與不同濃度 EG 反應之吸光變化趨勢 29 圖 12. pH 3、570 nm 下 KMnO₄(2.5 mM)與不同濃度 EG 反應之吸光變化趨勢 30 圖 13. pH 3、570 nm 下 KMnO₄(5.0 mM)與不同濃度 EG 反應之吸光變化趨勢 31 圖 14. pH 12、570 nm 下 KMnO₄(2.5 mM)與不同濃度 EG 反應之吸光變化趨勢 32 圖 15. pH 12、570 nm 下 KMnO₄(5.0 mM)與不同濃度 EG 反應之吸光變化趨勢 33 圖 16. EG 濃度與初期速率(ΔA/Δt)之二次多項式回歸比較圖(0–9 M,KMnO₄ = 2.5 mM,pH 12,λ = 570 nm) 35 圖 17. 0–300 秒初期速率(ΔA/Δt)與 EG 濃度之二次多項式回歸圖(0–9 M,KMnO₄ = 2.5 mM,pH 12,λ = 570 nm) 36   表目錄 表 1.實驗藥品 13 表 2.實驗設備 13 表 3 .EG濃度梯度設計表格 15 表 4.各濃度乙二醇樣品於反應過程中之吸光度變化 38 表 5.濃度預測與誤差分析: 回歸式:ΔA/Δt×104=0.0565x2-1.1245x-0.1291 39 表 6. HPLC 與過錳酸鉀比色法分析比較表 41

    參考文獻

    Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
    Ghosh, S., Biswas, M., & Roy, M. (2019). An overview of analytical techniques for plastic degradation and microplastic detection. Environmental Chemistry Letters, 17(4), 1901–1920.
    Mohammadi, A., & Es'haghi, Z. (2021). A spectrophotometric method for rapid determination of ethylene glycol using potassium permanganate. Journal of Analytical Science and Technology, 12(1), 1–8.
    United Nations (UN). (2015). Transforming our world: The 2030 Agenda for Sustainable Development.
    Biron, M. (2012). Thermoplastics and thermoplastic composites: Technical information for plastics users (2nd ed.). Elsevier.
    Tournier, V., Topham, C. M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., ... & Marty, A. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580(7802), 216–219.
    Grand View Research. (2021). Polyethylene Terephthalate (PET) Market Size, Share & Trends Analysis Report By Product (Bottles, Films & Sheets), By Application (Packaging, Automotive, Electrical & Electronics), By Region, And Segment Forecasts, 2021 – 2028.
    Chen, Y., Ma, X., & Zheng, D. (2021). Advances in chemical recycling of PET: Hydrolysis and catalytic depolymerization. Journal of Environmental Chemical Engineering, 9(5), 105632.
    Singh, R. K., Ruj, B., & Sadhukhan, A. K. (2022). Recent advances in enzymatic depolymerization of PET: Biocatalysts, mechanisms and green process engineering. Bioresource Technology, 347, 126700.
    Bhunia, K., Dutta, P., & Saha, D. (2001). Potassium permanganate oxidation for rapid determination of organics in water samples. Analytical Chemistry, 73(6), 1152–1157.
    Jiang, D., Zhang, W., & Zhang, J. (2015). Kinetic study on the oxidation of ethylene glycol by potassium permanganate in acidic and basic media. Journal of Chemical Education, 92(2), 369–374.
    permanganate. Journal of Analytical Science and Technology, 12(1), 1–8.
    Christian, G. D. (2014). Analytical Chemistry (7th ed.). John Wiley & Sons.
    Atkins, P., & de Paula, J. (2018). Physical chemistry (10th ed.). Oxford University Press.
    Laidler, K. J. (1987). Chemical kinetics (3rd ed.). Harper & Row.
    International Union of Pure and Applied Chemistry (IUPAC). (1997). Compendium of chemical terminology: The Gold Book (2nd ed.). Blackwell Scientific Publications.
    Zhong-Johnson, E. Z. L., Voigt, C. A., & Sinskey, A. J. (2021). An absorbance method for analysis of enzymatic degradation kinetics of poly(ethylene terephthalate) films. Scientific Reports, 11(1), 928.
    Friedman, M., & Sunder Raj, S. (1996). Permanganate oxidation of polyhydroxy compounds: Reaction pathways and applications. Journal of Agricultural and Food Chemistry, 44(5), 1446–1455.
    Pavia, D. L., Lampman, G. M., & Kriz, G. S. (2014). Introduction to spectroscopy (5th ed.). Cengage Learning.
    Dadgar, A., & Jones, R. D. (2005). Determination of low-molecular-weight alcohols in aqueous samples by HPLC with refractive index detection. Journal of Chromatographic Science, 43(8), 399–402.
    Kourkoumelis, N., & Tzaphlidou, M. (2005). A comparative study of colorimetric methods for the determination of alcohols. Microchemical Journal, 80(2), 123–130.
    Shukla, V., Sharma, V., & Bhattacharya, A. (2022). Quantification of PET hydrolysis products using internal standard HPLC method. Polymers, 14(7), 1421.

    QR CODE
    :::