| 研究生: |
崔嶽 Yue Tusi |
|---|---|
| 論文名稱: |
使用人工蜂群演算法和快速搜索隨機樹改進路徑規劃系統之研究 Using ABC and RRT Algorithms to Improve Path Planning |
| 指導教授: |
鍾鴻源
Hung-Yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 人工蜂群演算法 、快速搜索隨機樹 、移動機器人 、路徑規劃 、危險度 |
| 外文關鍵詞: | Artificial bee colony, Rapidly-exploring Random Tree, Path Planning, Mobile Robot, Danger Degree Map |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以人工蜂群演算法(ABC)結合快速搜索隨機樹(RRT)來創新路徑規劃演算法應用在移動式機器人當中,路徑規劃對於移動機器人是非常重要的研究之一,本文目的是如何在有障礙物的環境中,規劃出一條適合行走且無危險和有效率的路徑,讓機器人從起始點移動到目標點是安全且正確的。
與傳統的演算法有所不同,本文是先用RRT演算法的方式來尋找延伸點,在數個延伸點經過我們比較之後,選擇最佳的延伸點來使蜜蜂移動,因為人工蜂群演算法擁有結構簡單、容易操作且收斂速度較快的性能,他改善了以往用於路徑規劃的演算法在收斂速度慢和容易陷入區域最佳點的問題,雖然RRT在搜索未知區域方面有優良的特性,但它在每次規劃路徑上是不穩定的,所以本文結合人工蜂群的特性加入到RRT的演算法上,並處理障礙物的問題來模擬機器人的路徑。
總而言之,本文提出改良的演算法較以往單獨的RRT或單獨的人工蜂群演算法更具有效率與穩定且路徑最短。
In this study, we use the Artificial Bee Colony algorithm incorporating the fast search Random Tree (RRT) for innovation path planning, and is implemented in a mobile robot. Path planning for mobile robot is one of the very important researches. The aim is how to plan a path in the environment which have obstacles, and make the robot walk from start point to target safely and correctly.
Different from conventional algorithms, we use the RRT algorithm to find several extending points, and after comparison we choose the best extending point to make the extension of bees move. Because Artificial Bee Colony algorithm is simple structure, easy operation and fast convergence, it improved the problem of path planning which in the slow convergence and easy to local optimal solution in previous path planning algorithms. While the RRT has excellent characteristics in seeking unknown area, it is unstable for each planning. We herein combine the characteristics of artificial bee colony with the RRT algorithms to deal with the problem of obstacles and make practical simulation in a mobile robot.
In summary, it is shown that the data of the new algorithm on path planning are much more effective and stable than those of either single ABC or single RRT, and the path is the shortest.
參考文獻
[1] Q. Wu and B. Zeng, “Real-time globally optimized path planning in a dynamic environment,” IEEE International Conference on Intelligent Computation Technology and Automation, Vol.3, pp. 261-264, 2009.
[2] X. Ye, Y. Lei and H. Hon, “Design of intelligent mobile vehicle system and its global optimal path planning,” IEEE International Conference on Industrial Technology, pp. 1-5,21-24, 2008.
[3] A. T. Klesh, P. T. Kabamba and A.R. Girard, “Optimal Path planning for uncertain exploration,” American Control Conference, pp. 2421-2426, 2009.
[4] S. L. Valle, J. Kuffner. “Rapidly-exploring random trees: Progress and Prospects,” In Proceedings of Algorithmic and Computational Robotics: New Directions, pp. 293-308, 2001.
[5] M.S.Ganeshmurthy and Dr.G.R.Suresh, “Path Planning Algorithm for Autonomous Mobile Robot in Dynamic Environment” Signal Processing, Communication and Networking (ICSCN), 2015 3rd International Conference on, pp. 1-6, 2015.
[6] Jitin Kumar Goyal and K.S.Nagla, “A New Approach of Path Planning for Mobile Robots” Advances in Computing, Communications and Informatics ICACCI, 2014 International Conference on , pp.863-867, 2014.
[7] Meijuan Gao and Jingwen Tian, “Path Planning for Mobile Robot Based on Improved Simulated Annealing Artificial Neural Network Third International Conference on Natural Computation (ICNC 2007) , pp. 8-12, 2007.
[8] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," In Proceedings of IEEE International Conference on Neural Networks, pp. 1942-1948, 1995.
[9] Q. Mal and X. Lei, “Application of Artificial Fish School Algorithm in UCAV Path Planning”, IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), pp.555-559, 2010.
[10] D. Karaboga, “An Idea Based On Honey Bee Swarm for Numerical Optimization,” Technical Report TR06, Computer Engineering Department, Erciyes University, 2005.
[11] Yannis Marinakis , “A hybrid discrete Artificial Bee Colony-Grasp algorithm for clustering” Computers & Industrial Engineering, 2009. CIE 2009. International Conference on, pp. 548-553, 2009.
[12] K. Sugihara and J. Smith, “Genetic Algorithms for Adaptive Motion Planning of an Autonomous Mobile Robot,” In Proceedings of IEEE international Symposium on Computational Intelligence in Robotics and Automation, pp. 138-143, 1997.
[13] I. Ashiru, C. Czarnecki, and T. Routen, “Characteristics of a Genetic Based Approach to Path Planning for Mobile Robots,” J. Network and Computer Applications, Vol. 19, pp. 149-169, 1996.
[14] A. Coloni, M. Dorigo, V. Maniezzo, et a1. Distributed optimization by ant colonies. In Proceedimgs of the 1st European Confercnce on Artificial Life, pp. 134-142, 1991.
[15] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik 1, pp. 269-271, 1959.
[16] P. E. Hart, N. J. Nilsson, B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2), pp. 100-107, 1968.
[17] P. E. Hart, N. J. Nilsson, B. Raphael, “Correction to A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” SIGART Newsletter 37, pp. 28-29, 1972.
[18] R. Dechter, P. Judea, “Generalized best-first search strategies and the optimality of A*,” Journal of the ACM 32 (3), pp. 505-536, 1985.
[19] http://theory.stanford.edu/~amitp/GameProgramming
[20] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile
robots in dynamic environments,” Journal of Artificial Intelligence Research, Vol. 11, pp. 391-427, 1999.
[21] F. Dellaert, D. Fox, W. Burgard and S. Thrun, “Monte Carlo localization for mobile robots,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1322-1328, 1999.
[22] Yujang Yi , “A Novel Artificial Bee Colony Algorithm” Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2014 Sixth International Conference on, pp. 271-274, 2014.
[23] S. Thrun, D. Fox, W. Burgard and F. Dallaert, “Robust Monte Carlo Localization for Mobile Robots,” Artificial Intelligence, Vol. 128, pp. 99-141, 2001.
[24] M. B. Metea. “Planning and intelligence autonomous land vehicles using hierarchical terrain representation,” In Proceedings of IEEE International Conference on Robotics and Automation, pp. 1947-1952, 1987.
[25] E. Hernandez, M. Carreras, J. Anitich, P. Ridao, and A. Ortiz, “A topologically guided path planner for an AUV using homotopy classes,” 2011 IEEE International Conference on Robotics and Automation, pp.2337-2343, 2011.
[26] J. C. Latombe, Robot Motion Planning. Norwood, MA, Kluwer Academic Publishers, 1991.
[27] J. A. Janet, R. C. Luo, M. G. Kay, “The essential visibility graph: an approach to global motion planning for autonomous mobile robots,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 21-27, 1995.
[28] W. Adiprawita, A.S. Ahmad, J. Sembiring and B.R. Trilaksono, “New resampling algorithm for particle filter localization for mobile robot with 3 ultrasonic sonar sensor,” International Conference on Electrical Engineering and Informatics, pp.1-6, 2011.
[29] W. Hong, C. Zhou and Y. Tian, “Robust Monte Carlo Localization for humanoid soccer robot”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp.934-939, 2009.
[30] Tarun Kumar Sharma , “Improved food sources in Artificial Bee Colony” Swarm Intelligence (SIS), 2013 IEEE Symposium on, pp. 95-102, 2013.
[31] O. Takahashi, R. J. Schilling. “Motion Planning in a plane using gene-realized voronoi diagrams,” IEEE Trans Robotics and Automation, pp.143-150, 1989.
[32] Khatib, “Real-time obstacle for manipulators and mobile robot,” International Journal of Robotic Research, pp. 90-98, 1986.
[33] M. A. Goodrich, Potential Fields Tutorial, 2002. Available at:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3259&rep=rep1&type=pdf
[34] Garrison W. Greenwood, “A modified artificial bee colony algorithm for solving large graph theory problems” IEEE Congress on Evolutionary Computation, pp. 713-717, 2013.
[35] Xiaohu Shi , “An integrated algorithm based on artificial bee colony and particle swarm optimization” 2010 Sixth International Conference on Natural Computation ,pp. 2586-2590, 2010.
[36] N. H. C. Yung and Y. Cang, “An Intelligent Mobile Vehicle Navigator Based on Fuzzy Logic and Reinforcement Learning,” IEEE Trans on Sys Man and Cybern. Part B: Cyberneics, pp, 314-320, 1999.
[37] Wei-feng Gao, San-yang Liu, and Ling-ling Huang, “A Novel Artificial Bee Colony Algorithm Based on Modified Search Equation and Orthogonal Learning” IEEE Transactions on Cybernetics ,pp. 1011-1024, 2013.
[38] W Li, G. Y. Wang. “Application of improved PSO in mobile robotic path planning,” IEEE Intelligent Computing and Integrated Systems, pp. 45-48, 2010.
[39] Ying Zhang , “Efficient Cache-Supported Path Planning on Roads” IEEE Transactions on Knowledge and Data Engineering , pp. 951-964, 2015.
[40] R. Fierro, F. L. Lewis. “Control of nonholonomic mobile robot using neural networks,” IEEE Transactions on Neural Networks, pp.589-600, 1998.
[41] S. M. Lavalle, J. J. Kuffner. “Randomized kinodynamic planning,” In Proceedings of 1999 IEEE International Conference on Robotics and Automation, Vol.1, pp.473,479, 1999.
[42] 嚴蔚敏,吳偉民,數據結構.北京:清華大學出版社,2008.
[43] Q. Wang, W. Wang, Y. Li. “A multi-RRT based hierarchical path planning method,” International Conference of IEEE Communication Technology, pp.971-975, 2012.
[44] Y. Xue, G. Tian and B. Huang, “Optimal Robot Path Besed on Danger Degree Map,” IEEE International Conference on Automation and Logistics, pp.1040,1045, 5-7, 2009.
[45] 陳依璟,「自走車之路徑規劃與位置追蹤」,國立中央大學,碩士論文,民國101年。
[46] 姜俊甫,「在室內環境中使用ALC-PSO演算法與危險度指標改良RRT路徑規劃」,國立中央大學,碩士論文,民國102年。
[47] 沈昱廷,「應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃」國立中央大學,碩士論文,民國103年。