| 研究生: |
陳君閣 Chun-Ko Chen |
|---|---|
| 論文名稱: |
以陽極處理法製備奈米孔洞陣列光電元件 Electro-optical Devices on Anodic Aluminum Oxide Nano-channel Arrays |
| 指導教授: |
陳昇暉
Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 陽極氧化鋁 、換酸 、奈米孔洞陣列 |
| 外文關鍵詞: | anodic aluminum oxide, multi-electrolyte-step, nano-channel arrays |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以陽極處理法(AAO)製備奈米孔洞陣列基板,並應用於四種不同的光電元件。
研究重點在探討以大週期奈米壓印模控制孔洞生長位置和多步驟生長(multi-step)法對孔洞生長品質的影響,並提出換酸陽極氧化法(multi-electrolyte-step),先在磷酸中生長大週期的孔洞,再以化學溶解使其形成碗狀結構,接著換至草酸中用較小偏壓生長真圓度佳且規則排列的孔洞。根據奈米孔洞的真圓度分析以及平均週期的計算,在120-150 V的高外加偏壓下,其孔洞陣列的週期介於230-310 nm,標準差小於25 nm,孔洞的真圓度則超過0.85。
在基板應用上,本研究亦將基板應用於各類元件: 以翻印的方式在矽基板上蝕刻週期220 nm的錐狀抗反射結構,其反射率小於2%,並製作為異質接面太陽能電池,其太陽能電池效率增益達16%。以週期150 nm的陽極氧化基板搭配多層膜堆設計,製作出藍光區410-460 nm平均反射率92%的全方位反射鏡,讓60度斜向入射時的中心波長控制增益33%。也用模板結合原子層沉積法(Atomic Layer Deposition),在透明導電膜基板上製作週期僅90 nm 的二氧化鈦奈米管陣列,並以其作為染料敏化太陽能電池之工作電極。亦配合電鍍技術,製備出具表面電漿效應的銅奈米顆粒陣列。
Nano-channel arrays were grown by an anodic aluminum oxide (AAO) method and applied to four kinds of photonic devices.
The multi-step and nano-imprinting AAO processes were developed to grow high quality nano-channel arrays. Besides, a novel process of multi-electrolyte-step (MES) AAO was proposed to fabricate nano-channel arrays with better quality. The first AAO nano-channel arrays with large period of 200-350 nm were grown in phosphoric acid. Then the bowl structures were formed by chemical dissolution. The second AAO nano-channel arrays were grown from the bottom of the bowl structures in oxalic acid at a small bias voltage. To analyze the quality of MES AAO, the standard deviation of the nano-channel arrays was less than 25 nm at 120-150 volts; and the circularity was larger than 0.85.
There were several photonic devices applied to the AAO nano-channel arrays. As a template, the anti-reflectance structure of the nano-cone arrays was etched on the n-type silicon wafer. The reflectance of nano-cone arrays with a period of 220 nm was less than 2%. And the heterojunction silicon solar cell with the structures was higher than 16% of the photonic-electrical efficiency.
The autocloned multi-layers have also been coated on an AAO template with a period of 150 nm. A 92% reflectance of the omni-directional reflector (ODR) could be achieved in the spectrum range of 410-460 nm. There was 33% improvement of central wavelength shift for the ODR with 60 degree of the incident angle.
Besides, the AAO method has also combined with atomic layer deposition (ALD) to grow TiO2 nano-channel arrays on a fluorine doped tin oxide (FTO) glass to apply to a dye sensitized solar cell for increasing the photo-induced current.
Finally, the copper nano-particle arrays had also been grown on the AAO template by electroplating to enhance the surface plasma response effect.
[1] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., 58, 2059 (1987).
[2] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., 58, 2486 (1987).
[3] K. Busch, S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett., 83, 967 (1999).
[4] H. B. Xu, N. Q. Lu, D. P. Hao, J. Y. Gao, L. G. Zhang, "Biomimetic antireflective Si nanopillar arrays," Small, 4, 1972 (2008).
[5] L. M. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, L. K. Kim, E. F. Schuhert, "Realization of a near-perfect antireflection coating for silicon solar energy utilization," Optics Lett., 33, 2527 (2008).
[6] J. W. Leem, Y. M. Song, Y. T. Lee, J. S. Yu, "Effect of etching
parameters on antireflection properties of Si subwavelength grating structures for solar cell applications," Applied Physics B-Lasers and Optics, 100, 891 (2010).
[7] S. Karthik, K. M. Gopal, E. P. Haripriya, Y. Sorachon, P. Maggie, K. V. Oomman, "Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells ," Nanotechnol., 18, 065707 (2007).
[8] G. S. Schajer, "Measurement of non-uniform residual stresses using the hole-drilling method. part I—stress calculation procedures," J. Eng. Mater. Technol., 110, 338 (1988).
[9] M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos,
E. P. Ippen, H. I. Smith, "A three-dimensional optical photonic crystal with designed point defects," Nature, 429, 538 (2004).
[10] K. During, S. Hippe, F. Kreuzaler, J. Schell, "Synthesis and
self-assembly of a functional monoclonal antibody in transgenic
Nicotiana tabacum," Plant Molecular Biology, 15, 281(1990).
[11] K. S. Han, J. H. Shin, H. Lee, “A temporarily distinct subpopulation
of slow-cycling melanoma cells is required for continuous tumor
growth”, Solar Energy Mater. & Solar Cells,” 94, 583 (2010).
[12] K. Hadobas, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnol., 11, 161 (2000).
[13] C. H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett., 92, 061112 (2008).
[14] A. P. Li, F. Muller, “Hexagonal pore arrays with a 50-420 nm
interpore distance formed by self-organization in anodic alumina,” Appl. Phys. 84, 11, 6023 (1998).
[15] F. Li, L. Zhang, R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater., 10, 2470 (1998).
[16] G. E. Thompson, “Porous anodic alumina: fabrication, characterization and application,” Thin Solid Films, 297, 192 (1997).
[17] C. Y. Han, G. A. Willing, Z. Xiao, H. H. Wang, “Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching,“ Langmuir, 23, 1564 (2007).
[18] H. Masuda, K. Yada, A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys., 37, L1340 (1998).
[19] H. Masuda, H. Yamada, M. Satoh, H. Asoh, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett., 71, 2770 (1997).
[20] S. Shingubara, Y. Murakami, K. Morimoto, T. Takahagi, “Formation of aluminum nanodot array by combination of nano-indentation and anodic oxidation of aluminum,” Surf. Sci., 532, 317 (2003).
[21] I. Mikulskas, S. Juodkazis, R. Tomainas, J. G. Dumas,
“Aluminum oxide photonic crystals grown by a new hybrid
method,” Adv. Mater., 13, 1574 (2001).
[22] G. Gorokh, A. Mozalev, D. Solovei, V. Khatko, E. Llobet, and X.
Correig, “Anodic formation of low-aspect-ratio porous alumina
films for metal-oxide sensor application,” Electrochimica Acta, 52,
1771 (2006).
[23] F. Keller, M. S. Hunter, D. L. Robinson, "Structural features of oxide coatings on aluminum," J. Electrochem. Society, 100, 411 (1953).
[24] J. P. Sullivan, G. C. Wood, "The morphology and mechanism of formation of porous anodic films on aluminum," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 317, 511 (1970).
[25] J. C. Scully, H. Herman, "Corrosion: aqueous processes and
passive films," Vol. Treatise on materials science and technology
New York: Academic Press (1983).
[26] O. Jessensky, F. Muller, U. Gosele, “Self-organized formation
of hexagonal pore arrays in anodic alumina,” Appl. Phys., 72, 10 (1998).
[27] N. Q. Zhao, X. X. Jiang, C. S. Shi, J. J. Li, Z. G. Zhao, X. W. Du, "Effects of anodizing conditions on anodic alumina structure," J. Mater. Sci., 42, 3878 (2007).
[28] V. P. Parkhutik, V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminum,” J. Phys. D: Appl. Phys. 25, 1258 (1992).
[29] C. Y. Liu, A. Datta, Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett., 78, 120 (2001).
[30] Z. Wang Z, M. Brust, “Fabrication of nanostructure via self-
assembly of nanowires within the AAO template,” Nanoscale Res.
Lett., 2, 34 (2006).
[31] B. Yu, Y. Gao, H. Li, “Fabrication and optical characterization of poly(2, 5-di-n-butoxyphenylene) nanofibril arrays,” J. Appl.
Polym. Sci., 91, 425 (2004).
[32] K. L. Lai, M. H. Hon, I. C. Leu, “Fabrication of ordered nanoporous anodic alumina prepatterned by mold-assisted chemical etching,” Nanoscale Res. Lett., 6, 157 (2011).
[33] A. Nourmohammadi, S. J. Asadabadi, M. H. Yousefi, M. Ghasemzadeh, “Photoluminescence mission of nanoporous anodic aluminum oxide films prepared in phosphoric acid,” Nanoscale Res. Lett., 7, 689 (2012).
[34] C. G. Kuo, C. C. Chen, “Technique for self-Assembly of Tin nano-particles on anodic aluminum oxide (AAO) templates,” Materials Transactions, 50, 1102 (2009).
[35] W. Chen, J. S. Wu, X. H. Xia, “Porous anodic alumina with continuously manipulated pore/cell size,” ACS Nano., 2, 959 (2008).
[36] O. Sanz, F. J. Echave, J. A. Odriozola, M. Montes, “Aluminum
anodization in oxalic acid: controlling the texture of Al2O3/Al
monoliths for catalytic applications,” Ind. Eng. Chem. Res., 50,
2117 (2011).
[37] A. Belwalkara, E. Grasinga, W. V. Geertruyden, Z. Huang, W. Z. Misioleka, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes,” J.
Membrane Sci., 319, 192 (2008).
[38] S. K. Hwang, S. H. Jeong, H. Y. Hwang, O. J. Lee, K. H. Le,
“Fabrication of highly ordered pore array in anodic aluminum oxide,” Korean J. Chem. Eng., 19, 467473 (2002).
[39] A. P. Li, F. Mulle, A. Birner, K. Nielsch, U. Gosele,
”Fabrication and microstructuring of hexagonally ordered two-
dimensional nanopore arrays in anodic alumina,” Adv. Mater., 11,
48 (1999).
[40] H. Masuda, H. Yamada, M. Satoh, H. Asoh, “Highly ordered
nanochannel-array architecture in anodic alumina,” Appl. Phys.
Lett., 71, 10 (1999).
[41] Y. Jia, H. Zhou, P. Luo, S. Luo, J. Chen, Y. Kuang, “Preparation and
characteristics of well-aligned macroporous films on aluminum by high voltage anodization in mixed acid,” Surf. Coat. Technol., 201, 513 (2006).
[42] S. Shingubara, K. Morimoto, H. Sakaue, T. Takahagi, “Self-
organization of a porous alumina nanohole array using a sulfuric/ oxalic acid mixture as electrolyte,” Electrochem. Solid-State Lett., 7, E15 (2004).
[43] 黃柏諭,以奈米壓印改善陽極氧化鋁週期性,碩士論文,國立
中央大學光電科學與工程學系,民96年69。
[44] O. Sanz, F. J. Echave, J. A. Odriozola, M. Montes, “Aluminum
anodization in oxalic acid: controlling the texture of Al2O3/Al
monoliths for catalytic applications” Ind. Eng. Chem. Res., 50, 2117
(2011).
[45] A. Belwalkara, E. Grasinga, W. V. Geertruyden, Z. Huang, W.
Z. Misioleka, “Effect of processing parameters on pore structure and
thickness of anodic aluminum oxide (AAO) tubular membranes,” J.
Membrane Sci., 319, 192 (2008).
[46] K. Ersching, E. Dorico, R. C. da Silva, V. C. Zoldan, E. A. Isoppo,
A. D. C. Viegas, A. A. Pasa, “Surface and interface
characterization of nanoporous alumina templates produced in
oxalic acid and submitted to etching procedures,” Mater. Chem.
Phys., 137, 140 (2012).
[47] G. Patermarakis, K. Masavetas, “Aluminium anodising in
oxalate and sulphate solutions. comparison of chronopotentiometric
and overall kinetic response of growth mechanism of porous
anodic films,” J. Electroanalytical Chemistry, 588, 179 (2006).
[48] H. Masuda, H. Yamada, M. Satoh, H. Asoh, “Highly ordered
nanochannel-array architecture in anodic alumina,” Appl. Phys.
Lett., 71, 10 (1997).
[49] A. P. Li, F. Muller, U. Gosele, “Polycrystalline and
monocrystalline pore arrays with large interpore distance in anodic
alumina,” Electrochem. Solid-state Lett., 3, 131 (2000).
[50] B. Yu, Y. Gao, H. Li, “Fabrication and optical characterization
of poly (2,5-di-n-butoxyphenylene) nanofibril arrays,” J. Appl.
Polym. Sci., 91, 425 (2004).
[51] K. L. Lai, M. H. Hon, I. C. Leu, “Fabrication of ordered
nanoporous anodic alumina prepatterned by mold-assisted chemical
etching,” Nanoscale Res. Lett., 6, 157 (2011).
[52] A. Nourmohammadi, S. J. Asadabadi, M. H. Yousefi, M.
Ghasemzadeh, “Photoluminescence mission of nanoporous anodic aluminum oxide films prepared in phosphoric acid,” Nanoscale Res. Lett., 7, 689 (2012).
[53] C. G. Kuo, C. C. Chen, “Technique for self-Assembly of tin
nano-particles on anodic aluminum oxide (AAO) templates,”
Materials Transactions, 50, 1102 (2009).
[54] W. Chen, J. S. Wu, X. H. Xia, “Porous anodic alumina with
continuously manipulated pore/cell size,” ACS Nano., 2, 959
(2008).
[55] L. Zaraska, G. D. Sulka, M. Jaskua, “Properties of
nanostructures obtained by anodization of aluminum in phosphoric
acid at moderate potentials,” Journal of Physics: Conference
Series, 146, 012020 (2009).
[56] 許捷翔,利用陽極氧化鋁薄膜在矽太陽能電池表面製做抗反射奈米結構,碩士論文,國立中央大學光電科學與工程學系,民102年6月。
[57] J. W. Leem, Y. M. Song, Y. T. Lee, J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Applied Physics B-Lasers and Opt., 4, 891 (2010).
[58] S. H. Chen, S. Z. Tseng, W. Chen, W. H. Cho, C. H. Chan, “Wide-angle antireflection ZnO films on bullet-like nanostructures of multi-crystalline silicon,” J. Vac. Sci. & Technol., A 30, 01A141 (2012).
[59] K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett., 75, 3805 (1999).
[60] Thomas, “A dielectric omnidirectional reflector,” Science, 282, 1679 (1998).
[61] 黃昱嘉,自我複製式藍光波段全方位反射鏡,碩士論文,國立中央大學光電科學與工程學系,民102年6月。
[62] E. Nicoletti, D. Bulla, B. Luther-Davies, M. Gu, “Wide-angle stop-gap chalcogenide photonic crystals generated by direct multiple-line laser writing,” Appl. Phys. B, 105, 847 (2011).
[63] S. Kawakami, T. Kawashima, T. Sato, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys. Lett., 74, 463 (1999).
[64] B. O. Regan, M. Gratzel, “A low, high-efficiency solar cell based on
dye-sensitized colloidal TiO2 films,” Nature, 353, 737 (1991).
[65] M. Gratzel, “Solar Energy Conversion by dye-sensitized photo
voltaic Cells,” Inorganic Chemistry, 44, 6841 (2005).
[66] S. Linic, P. Christopher, D. B. Ingram, "Plasmonic-metal nano -structures for efficient conversion of solar to chemical energy," Nature Mater., 10, 911 (2011).
[67] J. F. Sanchez-Ramirez, "Preparation and optical absorption of colloidal dispersion of Au/Cu nanoparticles," Superficies y Vacio, 15, 16 (2002).
[68] B. Ding, B. J. Lee, M. Yang, H. S. Jung, J. K. Lee, “Surface- plasmon assisted energy conversion in dye-sensitized solar cells,” Adv. Energy Mater., 1, 415 (2011).
[69] A. Ghaddar, J. Gieraltowski, F. Gloaguen, “Effects of anodization
and electrodeposition conditions on the growth of copper and cobalt
nanostructures in aluminum oxide films,” J. Appl. Electrochem, 39,
719 (2009).
[70] M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez,
Y. Xia, “Gold nanostructures: engineering their plasmonic properties
for biomedical applications,” Chem. Soc. Rev., 11, 1084-94 (2006).