| 研究生: |
羅偉豪 Wei-Hao Luo |
|---|---|
| 論文名稱: |
支援飛鼠號立方衛星之S頻段地面站評估及整測 |
| 指導教授: |
張起維
Loren Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 立方衛星 、飛鼠號 、地面站 、軟體無線電 |
| 外文關鍵詞: | IDEASSat, S band, GNU Radio, Software Defined Radio |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
飛鼠號衛星(IDEASSat)是由國家太空中心資助由中央大學與國際合作研發的教學立方衛星計畫。立方衛星本身相較於一般衛星其尺寸要小得非常多也較不複雜,導致製造時間與消耗成本也會低得多,因此是一個非常適合以教育為目的或由學術組織開發的衛星架構。衛星由許多的次系統(Subsystem)所構成,一般來說,衛星的次系統被分為: 主酬載(Main Payload)、衛星電腦指令控制系統(Command and Data Handling Subsystem, C& DH)、通訊次系統(Communication Subsystem, COMM)、電力次系統(Electrical Power Subsystem, EPS)以及姿態控制次系統(Attitude Determination and Control Subsystem, ADCS)。通訊次系統是負責對地的資料傳送與接收從地面發射的指令,因此與地面站的通訊時間與資料的正確程度會是主要考量。
本論文將會集中於IDEASSat立方衛星的通訊次系統評估與設計,還有與其相對的通訊地面站的建置,希望總和這個計劃的經驗,以提供接下來的同仁做為學習及借鑒。
IDEASSat is a 3U CubeSat funded in part by the Taiwan National Space Organization and developed by National Central University in collaboration with international partners. The size and complexity of a CubeSat is much smaller than a typical satellite so that the manufacturing time and cost are much lower. These reasons make the CubeSat satellite architecture ideal for education purposes or for development in a university environment.. Like larger satellites, a CubeSat is made up of sub-systems including the Main Payload, Command and Data Handling Subsystem (C&DH), Communication Subsystem (COMM), Electrical Power Subsystem (EPS), and Attitude Determination and Control Subsystem (ADCS). Among those, COMM is responsible for transmitting data and receiving commands. Therefore, the amount of data that can be downlinked during access time between the satellite and the ground station, as well as the integrity of the data received will be the main considerations driving COMM subsystem design.
This thesis will introduce and discuss the assessment and design of the COMM subsystem of IDEASSat and the corresponding ground station. We conclude with the lessons learned through the development of this project for reference in the design of future missions.
[1] San Luis Obispo, CubeSat Design specification Rev. 13, Cal Poly, 2014.
[2] European Space Agency, Satellite Frequency Bands, Accessed on 5 October 2019, https://www.esa.int/Applications/Telecommunications_Integrated_Applications/Satellite_frequency_bands
[3] 中華民國交通部,頻率分配表,Accessed on 5 December, https://www.motc.gov.tw/post/home.jsp?id=364&parentpath=0
[4] Wikipedia, Radio Beacon, Accessed on 5 December, https://en.wikipedia.org/wiki/Radio_beacon
[5] Tracy He, What is analog modulation?, Accessed on 5 December, https://www.quora.com/What-is-analog-modulation
[6] Wikipedia, Frequency Shift Keying, Accessed on 5 December, https://commons.wikimedia.org/wiki/File:Fsk.svg
[7] Spencer Boyajian et al., “INSPIRESat-1: An Ionosphere and Solar X-ray Observing Microsat,” Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, August 2019.
[8] L. C. Chang et al., “IDEASSat: The Ionosphere Dynamics Exporer and Attitude Subsystem Satellite,” Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, July 2018.
[9] J. Mason et al., “Miniature X-Ray Solar Spectrometer: A Science-Oriented, University 3U CubeSat,” Journal of Spacecraft and Rockets, Vol. 53, No. 2, March-April 2016.
[10] X. Li et al., “Colorado Student Space Weather Experiment: Differential Flux Measurements of Energetic Particles in a Highly Inclined Low Earth Orbit,” Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, Geophys. Monogr. Ser. 199: 385-404, 2012.
[11] Clyde Space, Communication, Accessed on 19 October 2019, https://www.aac-clyde.space/satellite-bits/communications
[12] Cape Peninsula University of Technology, STXC-01-00031 User Manual, 2016.
[13] Cape Peninsula University of Technology, SANTC-20-00039 Interface Control Document, 2016.
[14] 羅偉元,「數位調變之向量誤差改善」,國立交通大學,碩士論文,民國96年6月。
[15] Intelsat corp., INTELSAT EARTH STATION STANDARDS (IESS) Document IESS-308 (Rev. 11), 2005.
[16] Janak Sodha, Convolutional (Faltung) Codes, Accessed on 31 October 2019, http://www.tdm.uni-oldenburg.de/2004/Material/faltung.htm
[17] Tony J. Rouphael, RF and Digital Signal Processing for Software-Defined Radio, Newnes, 2009.
[18] everythingRF, What is dBi? Accessed on 17 December 2019, https://www.everythingrf.com/community/what-is-dbi
[19] Thomas Norman, Integrated Security Systems Design: A Complete Reference for Building Enterprise-Wide Digital Security Systems, Second Edition, Butterworth-Heinemann, 2015.
[20] National Instruments, SPECIFICATIONS USRP-2932 Software Defined Radio Device, 2017.
[21] International Telecommunication Union, ITU-R P.372-14 RADIO NOISE, 2019.
[22] MIMOSA.co, Antenna Polarization Basics, Accessed on 17 December 2019, https://mimosa.co/white-papers/antenna-polarization
[23] Macnamara T., Introduction to antenna placement and installation. John Wiley & Sons, Mar 4, 2010.
[24] International Telecommunication Union, ITU-R P.676-12 ATTENUATION BY ATMOSPHERIC GASES, 2019.
[25] Ali Atia, Huiwen Yao, The International Handbook of Space Technology, Springer Praxis Books, 2014.
[26] COMTECH corp., Low/Medium Earth Orbit Satellite Tracking Antenna Systems, 2019.
[27] Harvey Lehpamer, Microwave Transmission Networks, Second edition, McGraw-Hill Education, 2004.
[28] Keith Willey, “Antenna Selection to Minimize Pointing Requirements”, Microwave Journal, January 2002.
[29] GNU Radio, GNU Radio, Accessed on 5 January 2020, https://wiki.gnuradio.org/index.php/Main_Page
[30] Daniel Estévez, K2SAT S-band image receiver, Accessed on 5 March 2019, https://destevez.net/2018/07/k2sat-s-band-image-receiver/
[31] Roger L. Freeman, Telecommunication System Engineering, Fourth edition, A John & Sons Inc. Publication, 2004.
[32] 何昇陽,「應用於數位視頻廣播系統中具有自動增益控制之接受端濾波器設計」,國立中央大學,碩士論文,民國96年10月。
[33] 李庭亞,「載波聚合應用於通用濾波多載波系統之效能評估」,國立臺灣大學,碩士論文,民國106年7月。
[34] International Telecommunication Union, REPORT ITU-R P.2097, Transionospheric radio propagation, The Global Ionospheric Scintillation Model (GISM), 2007.
[35] B. Shamla and K. G. G. Devi, “Design and implementation of Costas loop for BPSK demodulator,” 2012 Annual IEEE India Conference (INDICON), pp. 785–789, 2012.
[36] N. V. Kuznetsov et al., “Simulation of nonlinear models of QPSK costas loop in MatLab Simulink,” 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 66-71, St. Petersburg, 2014.
[37] Intelsat corp., INTEL EARTH STATION STANDARDS(IESS) Document IESS-308 (Rev. 11), 2007
[38] Anton Rodriguez, Mike Mensinger, Phase Ambiguity, Accessed on 16 March 2020, http://ee.bradley.edu/projects/proj2010/sorax/Phase_Ambiguity.html.
[39] 倪逸凡,「通道迴旋碼於SDR上之實現及驗證」,亞東技術學院,碩士論文,民國103年7月。
[40] Cape Peninsula University of Technology, Hardware Report: STXC, 2019.
[41] Teledyne Defense Electronics, Satellite Modem, Accessed on 20 May 2020, https://www.teledynedefenseelectronics.com/paradisedatacom/Pages/Satellite%20Modems.aspx?fbclid=IwAR2yZeQ62NVSbV1awJgg6dGkbjejIvH-zQuriQ801MpXfqoyaPhHh3IZyWI
[42] Rohde & Schwarz corp., R&S®SMBV100A Vector Signal Generator Operating Manual, 2017.
[43] Martyn Riley, Iain Richardson, Reed-Solomon Codes, Accessed on 16 March 2020, https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html