| 研究生: |
羅仕亮 Shin-Liang Lo |
|---|---|
| 論文名稱: |
侵台颱風路徑與風場之蒙地卡羅模擬 Monte Carlo Simulation of Landfalling Typhoons in Taiwan |
| 指導教授: |
朱佳仁
Chia-Ren Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 蒙地卡羅模式 、颱風模擬 、風災 、設計風速 |
| 外文關鍵詞: | Monte Carlo model, Typhoon simulation, Wind-related hazard, Design wind speed |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣位於西北太平洋颱風活躍區,颱風的強風和豪雨往往對臺灣帶來重大的災害損失。內政部消防署的統計資料顯示:颱風為臺灣最主要的天然災害,歷年累積颱風造成的財物損失超過地震所造成的損失。然而臺灣目前的產物保險制度中僅有火險和地震險,並無風災保險的項目,風災所造成的財物損失完全由受災戶和政府所承擔,有些企業或農民甚至會被一次嚴重的風災所擊垮。若採用風災保險,可分擔政府補貼災民之財務負擔。但評估臺灣各地強風發生機率及相關的風險評估,必須有足夠的颱風風速、風向數據。本研究採用蒙地卡羅模式(Monte Carlo method)模擬颱風路徑、中心氣壓、風速和風向,擴展颱風風速之樣本數。
本研究先利用統計分析美軍聯合警報中心1970~2016年之北太平洋上颱風的生成位置、移動速度、方向角、中心氣壓,找出其與經緯度之關係,再使用颱風中心氣壓差與風速之間的Holland參數化模式及蒙地卡羅模式來模擬侵台颱風之移動路徑、中心氣壓及風速,再使用邊界層流模式來計算近地表之風速、風向。中央山脈地形對颱風中心氣壓的影響則以一個指數衰減函數方式來模擬,模擬之地表風速並與中央氣象局沿海的浮標測站之颱風風速比對,有不錯的結果。再用模式模擬2259場侵台颱風之路徑與風速,再利用統計分析和甘保機率函數,找出臺灣各地強風的發生機率和設計風速。
Taiwan is located in the tracks of most Nothwest Pacific typhoons. The strong winds and heavy rains cause severe property damages to Taiwan. Typhoon is the major natural disaster, according to the National Fire Agency, Ministry of Interior. The total property damage caused typhoons is larger than that caused by one earthquake. Hence, the simulation of land-falling typhoon is essential to the risk assessment and the insurance of the wind-related hazards in Taiwan. This study developed a Monte Carlo model to simulate the tracks and wind field of the land-falling typhoons.
The Monte Carlo model is based on the historical data of typhoons in Northwesten Pacific Ocean between 1970~2016, collected by the Joint Typhoon Warming Center (JTWC) of US. The wind fields of typhoons were simulated by the parametric model of Holland (1980). The effects of the Central Mountain on the strength of typhoons were modeled by an exponential decay function. The simulated paths and wind speeds compare favorably with the observed results of typhoons collected by the Central Weather Bureau (CWB) of Taiwan. Then the simulated wind speeds of 2259 land-falling typhoons were used to calculate the probability of extreme wind speeds and the design wind speeds in different areas of Taiwan.
參考文獻
[1] 蔡益超,林宗賢 (1984) 建築物所受風力規範研擬,國科會防災科技研究報告,NSC73-0414-P002-04。
[2] 張景鐘 (1995) 臺灣風力載重規範中相關係數之可靠度研究,國科會專題研究報告,NSC83-2211-E-019-001。
[3] 陳瑞華 (1995) 風力規範中標稱風速與載重係數之研究(I),國科會專題研究報告,NSC84-2211-E-011-013。
[4] 蔡益超,陳瑞華,項維邦 (1996) 建築物風力規範條文解說及示範例之研訂,內政部建築研究所研究報告。
[5] 莊月璇 (2000) 臺灣地區風速機率分佈之研究,中央大學土木工程研究所碩士論文。
[6] 蔡孝忠、呂國臣、許乃寧、賈愛玟、DeMaria, M. (2011) 蒙地卡羅法在颱風侵襲機率估計的應用。大氣科學期刊,39-3,269-288。
[7] 蔡育霖 (2014) 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究。中央大學水海所研究所碩士論文。
[8] 羅元隆 (2015) 建築耐風設計規範風速模式探討及設計風速修訂研究,內政部建築研究所研究報告。
[9] 宋柏勳 (2017) 西北太平洋區域颱風模式建立-以韓國為例。中央大學土木工程研究所碩士論文。
[10] Fujita, H. 1952. The exact pattern of a concentration-dependent diffusion in a semi-ininfinite medium, Part II. Text. Res. J. 22: 823-827.
[11] Georgiou, P. N., 1985. Design wind speeds in tropical cyclone-prone regions. Ph.D. Thesis, Faculty of Engineering Science, University of Western Ontario, London, Ontario, Canada.
[12] Harper, B. A. and Holland, G. J. 1999. An updated parametric model of the tropical cyclone. Proceedings of the 23rd Conference of Hurricane and Tropical Meteorology Dallas, Texas, pp. 893-896.
[13] Takagi, H. and Wu, W. 2016. Maximum wind radius estimated by the 50 kt radius: improvement of storm surge forecasting over the western North Pacific, NHESS, 16(16):705-717.
[14] Holland, G. J. 1980. An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 108, 1212-1218.
[15] Huang, W. F. and Xu, Y. L., 2013. Typhoon-induced non-stationary buffeting response of long-span bridges in complex terrain. Eng. Struct. 57, 406-415.
[16] Hubbert, K. P. and Wolf, J. 1991. Numerical investigation of depth and current refraction of waves. J. Geophys. Res. 96 (9), 2737-2748.
[17] Jelesnianski, C. P., Chen, J. and Wilson, A. Shaffer 1992. SLOSH: Sea, Lake, and Overland Surges form Hurricanes, NOAA Technical Report, NWS 48, Silver Springs, Maryland.
[18] MacAfee, A. W. and Pearson, G. M. 2006. Development and testing of tropical cyclone parametric wind models tailored for multitude application preliminary results. J. Appl. Meteorol. 45, 1244-1260.
[19] Ou, S. H., Liau, J. M. amd Hsu, T. W. 2002. Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan. J. Ocean Engineering. 29(18), 947-971.
[20] Phadke, A. C., Martino, C. D., Cheung, K. F. and Houston, S. H. 2003. Modeling of tropical cyclone winds and waves for emergency management. J. Ocean Engineering. 30(4), 553-578.
[21] Powell, M. D., Soukup, G., Cocke, S., Gulati, S., Morisseau-Leroy, N., Hamid, S., Dorst, N., Axe, L., 2005. State of Florida hurricane loss projection model: atmospheric science component. J. Wind Eng. Ind. Aerodyn. 93(8), 651–674.
[22] Schloemer, R. W. 1954. Analysis and synthesis of hurricane wind patterns over Lake Okechobee. Florida US Weather Bureau, Hydromet. Rep., 31, 1-49.
[23] Verkaik, J. W., Smits, A. and Ettema, J. 2003. Extreme value analysis and spatial interpolation methods for the determination of extreme return levels of wind speed. KNMI-HYDRA project: Wind climate assessment of the Netherlands 2003. De Bilt, Royal Netherlands Meteorological Institute (KNMI) Phase Report 9: 1–202.
[24] Vickery, P. J., Skerlj, P. F. and Twisdale Jr. L. A. 2000. Simulation of hurricane risk in the U.S. using an empirical track model. J. Struct. Eng. ASCE, 126(10), 1222-1237.
[25] Vickery, P. J. 2005. Simple empirical models for estimating the increase in the central pressure of tropical cyclones after landfall along the coastline of the United States. J. Appl. Meteorol. 44, 1807-1826.
[26] Vickery, P. J. Masters, F. J., Powell, M. D., and Wadhera, D., 2009. Hurricane hazard modeling: The past, present, and future. J. Wind Eng. Ind. Aerodyn. 47, 2497-2517.
[27] Vickers, D. and L. Mahrt, 1997: Fetch limited drag coefficients. Bound.-Layer Meteor., 85, 53–79.
[28] Willoughby, H. E. Darling, R. W. and Rahn, M. E. 2006. Parametric representation of the primary hurricane vortex. Part II: A new family of sectional continuous profiles. Mon. Weather Rev. 134, 1102-1120.
[29] Yelland, M. J. and P. K. Taylor, 1996. Wind stress measurements from the open ocean. J. Phys. Oceanogr., 26, 541–558.
[30] Yin, J. M., Welch, M. B., Yashiro, H. and Shinohara, M., 2009. Basin wide typhoon risk modeling and simulation for western north Pacific basin. The 7th Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan.