跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張紫鈺
Tzu-yu Chang
論文名稱: 防災避難疏散作業排程規劃之研究
指導教授: 顏上堯
Shang-yao Yan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 96
中文關鍵詞: 防災避難疏散作業時空網路含額外限制網路流動問題啟發解法
外文關鍵詞: Disaster evacuation, Time-space network, Multiple commodity network flow problem, Heuristic
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣由於處於特殊地理位置,歷年來遭遇天然災害之次數更是數不勝數。當嚴重的天然災害發生時,不僅會危害到國人的生命安全,有時也造成重大的財物損失,而損失程度與救援的反應時間及疏散快慢有極為密切的關係,故在最短時間內疏散或撤離可能發生災情地區之民眾就成為政府的首要任務。以往疏散車輛的調度安排及路線規劃,通常由決策者根據自身之過去經驗來決定,此種方式不僅十分沒有效率,還可能因決策者的判斷錯誤,導致延誤救災的情形發生。因此,本研究以決策者的角度,以最短時間內完成疏散作業為目標,發展一防災避難疏散作業排程規劃模式,以期能提供決策者作為有效規劃之輔助工具,並協助決策者有效地進行規劃。

    此外,本研究亦利用時空網路流動技巧建立防災避難疏散作業的車流與人流網路,以定式疏散車輛及民眾在時空中的流動情況。此模式為含額外限制之整數網路流動問題,屬於NP-hard問題。為有效率地求解大規模之問題,故本研究依據問題之特性,並配合 CPLEX 數學規劃套裝軟體,發展一分階段的啟發解演算法。最後,為驗證本研究模式與啟發解演算法之實用性,以新竹市450公厘平均日累積降雨量可能造成淹水災害狀況之地區為測試範例,測試結果良好結果,顯示本模式與演算法在實務上可有效的運用,並能提供決策者做為防災避散疏散作業規劃之參考。


    Because of the special geographical environment, there are many natural disasters happened in Taiwan every year. When serious natural disasters occurred, it not only endangers the safety of people's lives but also causes significant property damage. However, the response time of rescue and the evacuation speed affect the extent of the damage deeply. Hence, the most important action for the government in the duration of the damage is evacuating the victims rapidly. In practice, the decision makers arrange the evacuative vehicles and decide the escape route base on their own experience. Without efficiency, it may end up with delay situation which is caused by the misjudgment of the decision maker. Therefore, in this research, based on the perspective of decision maker, we develop a model of optimal decision of disaster evacuation. The model is expected to be an effective tool for the decision maker; also, it can help the decision maker to solve problems.

    In addition, the time-space network flow technique is employed to represent the potential movement of the victims and the evacuative vehicles. The model is formulated as an integer multiple commodity network flow problem, which is characterized as NP-hard. To solve the problem efficiently in real practice, we developed a heuristic algorithm with CPLEX software. In order to evaluate the performance of the model and the solution algorithm practice, we perform a case study using the flooding area with the situation of 450 mm rainfall in Hsinchu County, Taiwan. The results are good, showing that the model and the solution algorithm would be useful for disaster evacuation and used as a reference for the decision maker.

    目錄 摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的與範圍 3 1.3研究方法與流程 4 第二章 文獻回顧 6 2.1防災避難疏散作業相關規定之文獻 6 2.2防災避難疏散作業排程規劃之相關文獻 7 2.3時空網路之相關文獻 10 2.4大型含額外限制之整數網路流動問題啟發式演算法之相關文獻 13 2.5文獻評析 16 第三章 模式構建 17 3.1現況分析與問題描述 17 3.2模式測試 19 3.2.1基本假設與已知資訊 19 3.2.2防災避難疏散作業排程規劃模式之時空網路 21 3.2.2.1車流時空網路 21 3.2.2.2人流時空網路 26 3.2.3符號說明 30 3.2.4數學定式 31 3.3模式測試 32 3.4模式應用 35 3.5小結 36 第四章 求解演算法設計 37 4.1啟發解演算法 37 4.2目標值下限解 47 4.3小結 47 第五章 範例測試 48 5.1資料分析 48 5.1.1車隊規劃資料 48 5.1.2里集結點供給資料 49 5.1.3避難收容所需求資料 50 5.1.4疏散車輛之旅行時間資料 51 5.2模式發展 51 5.2.1問題規模 51 5.2.2模式輸入資料 53 5.3電腦演算環境及設定 53 5.3.1電腦演算環境 53 5.3.2相關參數設定 54 5.3.3模式輸出資料 55 5.4範例測試結果與分析 56 5.5敏感度分析 65 5.5.1疏散人數之敏感度分析 65 5.5.2車隊規模之敏感度分析 66 5.5.3旅行時間之敏感度分析 68 5.5.4車輛載客數之敏感度分析 69 5.6小結 71 第六章 結論與建議 72 6.1結論 72 6.2建議 73 6.3貢獻 74 參考文獻 76 附錄 81 附錄一 CPLEX CALLABLE LIBRARY CODE 81 附錄二 範例測試相關資料 82

    1.中華民國內政部消防署,消防白皮書,內政部消防署 (2013)。
    2.中華民國行政院中央災害防救會報,災害防救白皮書,行政院 (2013)。
    3.行政法人國家災害防救科技中心,2014年5月25日,http://www.ncdr.nat.gov.tw/home.aspx?WebSiteID=5853983c-7a45-4c1c-9093-f62cb7458282
    4.余秀梅,「多元商品模式應用在動態貨櫃調度問題之研究」,碩士論文,國立成功大學交通管理科學研究所 (1994)。
    5.吳逸祥,「隨機旅行時間下計程車共乘及乘客配對整合模式與求解演算法之研究」,碩士論文,國立中央大學土木工程學系 (2009)。
    6.林俊全,台灣的天然災害,遠足文化 (2004)。
    7.林靖亞,「防災避難疏散作業最佳決策模式之研究」,碩士論文,國立中央大學土木工程學系 (2012)。
    8.邱明琦,陳春益,林佐鼎,「海運貨櫃排程模式之研究」,運輸計劃季刊,第三十一卷,第三期,第495-522 頁(2002)。
    9.徐鸛侖,「保全公司運鈔車護運作業風險評估暨排程規劃之研究」,碩士論文,國立中央大學土木工程學系 (2013)。
    10.陳信宇,「震災物流系統之決策模式」,碩士論文,國立交通大學交通運輸研究所 (2001)。
    11.陳弘毅,防災與避難,鼎茂 (2008)。
    12.陳怡君,「隨機旅行時間下跨校選授課專車排程規劃之研究」,碩士論文,國立中央大學土木工程學系 (2010)。
    13.陳軍佑,「新竹縣五峰鄉避難撤離機制與收容規劃之探討」,碩士論文,國立中央大學土木工程學系 (2011)。
    14.國立中央大學土木工程學系,土木工程防災概論,藝軒圖書出版社 (2008)。
    15.張立偉,「災後工程緊急搶修作業排程之研究」,碩士論文,淡江大學運輸管理學系 (2001)。
    16.曾雅苓,「分散式救災物資存放問題之研究-以台北市小型移動式抽水機為例」,碩士論文,國立中央大學土木工程系 (2006)。
    17.鄭欣蓉、曾國雄,「賑災物資配送系統之多目標最適規劃」,運輸計劃季刊,第三十二卷,第三期,第561-580 頁 (2003)。
    18.韓復華、卓裕仁,「緊急疏散公用車輛調派之研究」,運輸計劃季刊,第二十三卷,第三期,第247-272 頁 (1994)。
    19.盧華安,「因應班機延遲之最佳化即時機門指派」,運輸計劃季刊,第三十卷,第四期,第849-869 頁 (2001)。
    20.盧華安、林正偉,「岸肩橋式起重機工作排程之研究」,運輸計畫季刊,第三十五卷,第三期,第281-309 頁 (2006)。
    21.顏上堯、翁綵穗,「季節轉換間緩衝期飛航排程之研究」,運輸計劃季刊,第三十卷,第四期,第891-921 頁 (2001)。
    22.戴荏國,「提升地方政府鄉鎮市層級防救能力之研究-以新竹縣竹北市、竹東鎮、五峰鄉為例」,碩士論文,國立中央大學土木工程學系 (2010)。
    23.Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P. and Vance, P. H., “Branch-and-price: column generation for solving huge integer programs,” Operations Research, Vol 46, pp. 316-329 (1998).
    24.Barnhart, C., Krishnan, N., Kim, D. and Ware, k., “Network Design for Express Shipment Delivery”, Computational Optimization and Applications, Vol. 21, pp. 239-262 (2002).
    25.Barbarosoğlu, G., Őzdamar, L. and Çevik A., “An interactive approch for hierarchical analysis of helicopter logistics in disaster relief operations,” European Journal of Operational Research, Vol.140, pp.118-133 (2002).
    26.Bent, R. W. and Hentenryck P. V., “Scenario-based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers,” Operations Research, Vol. 52, pp. 977-987 (2003).
    27.Chen, C. Y. and Kornhauser, A. L., “Decomposition of Convex Mulit-Commodity Network Flow Problem,” Dept. of Civil Engineering and Operations Research, Report SOR-90-19, Princeton University, Princeton, NJ (1990).
    28.Diana, M. and Dessouky, M. M., “A New Regret Insertion Heuristic for Solving Large-Scale Dial-a-Ride Problems with Time Windows,” Transportation Research Part B, Vol. 38, pp. 539-557 (2004).
    29.Diana, M., Dessouky, M. M., and Xia, N., “A model for the fleet sizing of demand responsive transportation services with time windows,” Transportation Research Part B, Vol. 40, Iss. 8, pp. 651-666 (2006).
    30.Fisher, M. L., “The Lagrangian Relaxation Method for Solving Integer Programming Problem,” Management Science, Vol. 27, pp. 1-18 (1981).
    31.Fiedrich, F., Gehbauer, F. and Rickers, U., “Optimized Resource Allocation for Emergency Response After Earthquake Disasters,” Safety Science, Vol. 35, Iss. 1–3, pp. 41-57 (2000).
    32.Haghani, A. and OH, S-C., “Formulation and Solution of a Multi-Commodity, Multi-Modal Network Flow Model for Disaster Relief Operations”, Transportation Research A, Vol. 30, pp. 231-250 (1996).
    33.Cheng, H. and Yang, X., “Emergency Evacuation Capacity of Subway Stations,” Procedia - Social and Behavioral Sciences, Vol. 43, pp. 339-348 (2012).
    34.Jong, M.D. and Helsloot, I., “The effects of information and evacuation plans on civilian response during the National Dutch flooding exercise ‘‘Waterproef ” Procedia Engineering, Vol. 3, pp. 153-162 (2010).
    35.Lee, B. C., “Routing Problem with Service Choices, Flight Transportation Laboratory,” Massachusetts Institute of Technology, Report R86-4, MA (1986).
    36.Lai, M. F. and Lo, H. K., “Ferry service network design: optimal fleet size, routing, and scheduling,” Transportation Research Part A, Vol. 38,pp. 305-328 (2004).
    37.Manley, M. T., “ Exitus: An Agent-Based Evacuation Simulation Model for Heterogeneous Populations,” All Graduate Theses and Dissertations, Paper 1205, Utah State University (2012).
    38.Powell, W. B. and Ioannis, A. K., “Shipment Routing Algorithms with Tree Constraints,” Transportation Science, Vol. 26, pp. 230-245 (1992).
    39.Simpson, R. W., “A Review of Scheduling and Routing Model for Airline Scheduling,” IX AGIFORS Symposium, Broadway, England (1969).
    40.Smith, J. L., “Agent-Based Simulation of Human Movements During Emergency Evacuations of Facilities,” Applied Research Associates, Inc., USA. (2008).
    41.Yan, S. and Yang, D. H., “A Decision Support Framework for Handling Schedule Perturbation”, Transportation Research Part B, Vol. 30, pp. 405-419 (1996).
    42.Yan, S., Lai, C. H. and Chen, C. H., “A Short-Term Flight Scheduling Model for International Express Package Delivery,” Journal of Air Transport Management, Vol. 11, Iss. 6, pp. 368-374 (2005).
    43.Yan, S., Chen, C. H., and Chen, C. K., “Long-Term Manpower Supply planning for air cargo terminals,” Journal of Transport Management, Vol. 12, Issue 4, pp. 175-181 (2006).
    44.Yan, S., Chi, C. J. and Tang, C. H. (2006), “Inter-city Bus Routing and Timetable Setting under Stochastic Demands,” Transportation Research, Vol. 40 A, pp. 572-586 (SSCI, SCI and EI).
    45.Yan, S. and Lai, W. S., “An optimal scheduling model for ready mixed concrete supply with overtime considerations,” Automation in Construction, Vol. 16, pp. 734-744 (2007).
    46.Yan, S. and Shih, Y. L., “A time-space network model for work team scheduling after a major disaster”, Journal of the Chinese Institute of Engineers, Vol. 30, No. 1, pp. 63-75 (2007).
    47.Yan, S., Tang, C.H., and Fu, T.C., “An Airline Scheduling Model and Solution Algorithms under Stochastic Demands,” European Journal of Operational Research, Vol. 190 B, pp. 22-39 (2008).
    48.Yan, S., Chen, C. Y. and Lin, S. C., “Ship Scheduling and Container Shipment Planning for Liners in Short-Term Operations,” Journal of Marine Science and Technology, Vol. 14, No. 4, pp. 417-435 (2009).
    49.Yan, S., Lin, H. C. and Jiang, X.Y., “A Planning Model with a Solution Algorithm for Ready Mixed Concrete Production and Truck Dispatching under Stochastic Travel Times,” Engineering Optimization, Vol. 44, Iss. 4, pp. 427-447 (2012).
    50.Yan, S., Wang, S. S. and Wu, M. W., “A Model with a Solution Algorithm for the Cash Transportation Vehicle Routing and Scheduling Problem,” Computers and Industrial Engineering, Vol. 63, Iss. 2, pp. 464-473 (2012).
    51.Yan, S., Wang, S. S., and Chang, Y. H., “Cash Transportation Vehicle Routing and Scheduling under Stochastic Travel Times,” Engineering Optimization (2013). (accepted)

    QR CODE
    :::