跳到主要內容

簡易檢索 / 詳目顯示

研究生: 魏國鈞
Kuo-Chun Wei
論文名稱: 基於改良式HOG之物件追蹤演算法
指導教授: 張寶基 范國清
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系在職專班
Executive Master of Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 60
中文關鍵詞: 物件追蹤
外文關鍵詞: HOG
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    物件追蹤在近年來是一個相當熱門話題,特別在電腦視頻領域上,以物件追蹤為基礎用在自動監控系統上更是活躍,其中HOG演算法是目前公認最有效的演算法。
    實際應用上HOG佔據太多運算,又以Gamma correction最為耗時。本研究本論文設計MHOG(Modified Histogram of Oriented Gradient),提出用Sobel Edge演算法的概念來延伸來進行取代,修改HOG耗費資源部分,提出一個試用及時系統演算法,稱之為基於改良式HOG之物件追蹤演算法MHOG(Modified Histogram of Oriented Gradient)和HOG相比的優點包括:

    1.更能減少運算資源。
    2.提升追蹤穩定度
    在實驗結果上,展示出原始HOG與本研究所改良之差異性。依序是六個測試影像水鳥、汽車(靜止)、計算機、汽車(移動中)、黑猩猩


    Abstract
    Object tracking has recently been a widely researched topic, specifically in studies investigating computer-automated surveillance systems in the field of computer vision. Among currently available algorithms , the histogram of oriented gradients (HOG) has been recognized as the most effective design.
    However, in practice, applying the HOG requires excessive computational resources, particularly for the gamma correction method, which is the most time-consuming method. Therefore, by expanding the concept of Sobel edge detection, the present study proposed a feasible real-time computing system named the modified histogram of oriented gradients (MHOG) to minimize the resource requirements of the conventional HOG. Comparing the MHOG and HOG revealed that the proposed algorithm has lower computational resource requirements and enhances the stability of tracking.
    In this thesis, the differences between the conventional HOG and MHOD are demonstrated in six experimental images, namely images of a water bird, a stationary automobile, a calculator, a moving automobile, and a chimpanzee.

    摘要………………………………………………………………………iii Abstract………………………………………………………………iv 致謝 ……………………………………………………………………v 目錄……………………………………………………………………vi 附圖索引……………………………………………………………………viii 第一章 緒論………………………………………………………………1 1.1簡介……………………………………………………………1 1.2研究動機………………………………………………………2 1.3本論文架構……………………………………………………3 第二章過去相關研究…………………………………………3 第三章 特徵擷取技術 ………………………………………3 第四章系統架構與改良式HOG演算法………………………3 第五章 實驗結果 ……………………………………………3 第六章 結論 …………………………………………………3 第二章 過去相關研究……………………………………………………4 2.1 物件追蹤……………………………………………………4 2.2 人臉偵測……………………………………………………7 第三章 特徵擷取技術………………………………………………………9 3.1 Pure pixel…………………………………………………… 9 3.2 Sobel Edge……………………………………………………11 3.3 Haar-like…………………………………………………… 12 3.4 LBP(Local binary pattern)…………………………………13 3.5 SIFT/SURT ………………………………………………… 15 3.6 HOG(Histogram of Oriented Gradient)…………………… 20 第四章 系統架構與改良式HOG演算法…………………………………26 4.1 OpenCV介紹…………………………………………………26 4.2 模擬系統架構 ……………………………………………… 28 4.3 新提出的方法(MHOG)………………………………………30 第五章 實驗結果………………………………………………………… 36 5.1 測試影像與實驗參數說明………………………………… 36 5.2 視覺分析…………………………………………………… 36 5.3 量化分析…………………………………………………… 43 第六章 結論……………………………………………………………… 45 參考文獻…………………………………………………………… 48

    參考文獻
    [1]A.M.Elgammal,D.Harwood,and L.S.Davis,”non-parametic model for background subtraction,”in proc. Of the 6th Europan conference on computer Vision,pp.751-767,2000.
    [2]B. Horn and B. schunck, “Determining optical flow,”Artificial Intelligence,vol.17,pp.185-203,1981.
    [3]D.Comaniciu,and P.Meer, “Mean Shift:A Robust Approach toward Fearure Space Analysis,”IEEE trans.On Pattern Analysis and Machine Intelligence,vol.24,no.5,pp.603-619,May 2002.
    [4]K.Nummiaro,E.koller-Meier,and LV Gool,”An Adaptive Color-Based Particle Filter,”Image and Vision Computing,vol.21,pp.990110,2003[
    [5] M.Breitenstein, F.Reichlin, B.Leibe, E.Koller-Meier, L.V.Gool,”Robust tracking-by-detection using a detector confidence particle filter,”In Proc.OfICCV,2009.
    [6]B.Babenko,M.-H. Yang,S.Belongie,”Visual Tisual Tracking with Online Multiple Instance Learning”,In Proc.Of CVPR,2009
    [7]H.Grabner and H.Bischof.”On-line boosting and vision.”In Proc.CVPR,volume 1,pp.260-267,2006.
    [8]T.G.Dietterich,R.H.Lathrop,and L.T.perez.Solving the multiple instance problem with axis parallel rectangles.artificial Intelligence,pp.31-71,1997.
    [9] G.Yang, and T.S.Huang,”Human facedetection in complex background,”Pattern Recognition,27(1),53-63,1994.
    [10] Hsu,R.L.,A.M.Mohamed and A.K.Jain,”Face detection in color omage,”IEEE Transactions on Pattern Analysis and Machine Intelligence,24(5),pp.696-704,2002.
    [11] Jain ,K.,Y.Zhong and M.P.Jolly,”Deformable template models:A review,”Signal Processing.71(2),pp.109-129,1998.
    [12] K.K.Sung, and T.Poggio,”Example-based Learning for view-based human face detection,”IEEE Transactions on Pattern Analysis and Machine Intelligence,20(1),pp.39-51,1998.
    [13]R.Gonzalez and R.woods,”Digital Image Proccessing,”Addison Wesley,1992,pp.414-428.
    [14]R.Boyle and R.Thomas,”Computer Vision: A First Course,”Blockwell Scientific Publications,1988,pp.48-50.
    [15]Viola and Jones,”Rapid object detection using a boosted cascade of simplefeatures”,Computer Vision and Pattern Recognition,2001
    [16] R.Lienhart, and J.Maydt, ,”An extended set of Haar-like features for rapid object detection”,In Proc.OFICIP,pp.I:900-903,2002
    [17] C.H.Messom, and A.L.C.Barczak,”Fast and Efficient Rotated Haar-like Features Using Rotated Integral Images”,In Proc.Of Australian Conference on Robotics and Automation,pp.1-6,2006
    [18]S.Brahnam,L.C.Jain,L.Nanni,and A.Lumini,Eds.,Local Binary Patterns:New Variants and Applications.London,U.K.:Springer,2014.
    [19]T.Ojala,M.Pietikainen,and T.Maenpaa,”Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,”IEEE Trans.Pattern Anal.Mach.Intell.,vol.24,no.7,pp.971-987,jul.2002.
    [20] L Liu, S Lao, Fieguth P, S S Guo, X Wang and M Pietikainen,”Median robust extended local binary pattern for texture classification,”IEEE Transactions on Image Processing,25(3):pp.1368-1381,2016.
    [21] G.David, Lowe,”Object recongnition from local scale-invariant features”.Proceedings of the international Conference on Computer Vision.pp,1150-1157,1999.

    [22]Lowe, G.David,”Distinctive Image Feature from Scale-Invariant Keypoints”.International Journal of Computer Vision.60(2):pp.91-110,2004.
    [23]Herbert Bay,Andress Ess,Tinne Tuytelaars,Luc Vn Gool,”SURF:Speeded Up
    Robust Features”,Computer Vision and Image Understanding,Vol.110,No.3.pp.346-359,2008.
    [24] H Bay, A Ess and T Tuytelaars,”Speeded-up robust features(SURF),”Computer vision and image understanding,”110(3):pp.346-359,2008
    [25] P M Panchal, S R Panchal and S K. Shah,”A comparison of SIFT and SURF,”International Journal of Innovative Research in Computer and Communiction Engineering,1(2320):pp.97-98,2013.
    [26]X.Wang,X.Han,and S.Yan.”A HOG-LBP human detector with partial occlusion handling,”In Proc.of ICCV,2009.
    [27] N Dalal and B TRiggs.,”Histograms of oriented gradients for human detection,”In proc.IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1:pp.886-893,2005.
    [28] Q Zhu, M C Yeh and K T Cheng,”Fast human detection using a cascade of histograms of oriented gradients,”In Proc.IEEE Computer Society Conference on Computer Vision and Pattern Recognition,pp.1491-1498,2006.
    [29]Y.pang,Y.Yuan and X,Li,”Efficient HOG human detrction,”Signal Prcessing,91:pp.773-781,2011.

    QR CODE
    :::