跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳泊錞
Bo-Chun Chen
論文名稱: 低質量X光雙星4U2127+119之軌道週期演化
指導教授: 周翊
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 75
中文關鍵詞: 低質量X光雙星
外文關鍵詞: LMXB
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 4U2127+119 是一個低質量 X 光雙星系統 (low mass X-ray binary, LMXB) ,由一顆中子星 (neutron star) 及一顆殼層剝落的巨星 (stripped giant) 。hyperref[Aurière1984]{Aurière et al. (1984)} 首次透過可見光波段對 4U2127+119 進行觀測,hyperref[Ilovaisky1993]{Ilovaisky et al. (1993)} 測量出 4U2127+119 的軌道週期 $P_{orb} = 0.713014(1)$ 天並建立線性星曆表 (linear ephemeris) ,hyperref[Homer1998]{Homer \& Charles (1998)} 更新觀測資料,得出軌道週期變化率 $\dot{P}/{P} \sim 9 \times 10^{-7} (yr^{-1})$ 並建立二階星曆表 (quadratic ephemeris) 。

    本論文的目的是透過 4U2127+119 的光陷 (dip) 現象推算其軌道週期演化,進一步了解具吸積盤暈 (Accretion Disc Corona, ADC) 結構之低質量 X 光雙星系統的演化過程。從 1977 到 2024 年共 47 年的 X 光觀測,包括 ASCA 、 BeppoSAX 、 Chandra 、 EXOSAT 、 Ginga 、 HEAO-1 、 MAXI 、 RXTE 、 XMM-Newton 的觀測資料,我們將光陷作為相位基準點 (fiducial point) ,首先利用多重正弦擬合 (multi-sinusoidal fitting) 找出光陷的相位位置,再以蒙地卡羅模擬 (Monte Carlo simulation) 求出光陷相位的誤差,最終根據線性及二次曲線模型求得軌道參數。

    經由新的觀測資料,從線性模型中得出軌道週期為 $0.71302140(32)$ 天,在二階模型中,得到軌道週期變化率為 $\dot{P}/P$ 為 $(1.42 \pm 1.01) \times 10^{-7}(yr^{-1})$ ,表示我們並未測到明顯軌道週期變化率,其 $2 \sigma$ 上限為 $2.02 \times 10^{-7}(yr^{-1})$。具有吸積盤暈結構的低質量 X 光雙星系統中,其內部光度 (intrinsic luminosity, $L_{int}$) 會接近愛丁頓光度 (Eddington luminosity, $L_{Edd}$),藉由分析不同內部光度與軌道週期變化率的關係, 4U2127+119 傾向於質量比較低的結果( $q$ 介於 0.06 到 0.19 ),與 \hyperref[van Zyl2004]{van Zyl et al. (2004)} 得出的結果相符。


    4U2127+119 is a low mass X-ray binary (LMXB) system composed of a neutron star and a stripped giant. \hyperref[Aurière1984]{Aurière et al. (1984)} first investigated its orbital period evolution by using optical observations. \hyperref[Ilovaisky1993]{Ilovaisky et al. (1993)} measured the orbital period of 4U2127+119 to be $P_{orb} = 0.713014(1)$ days and established a linear ephemeris. \hyperref[Homer1998]{Homer \& Charles (1998)} updated the observation data, derived an orbital period derivative of
    $\dot{P}/{P} \sim 9 \times 10^{-7} (yr^{-1})$ and constructed a quadratic ephemeris.

    The purpose of this study is to estimate the orbital period evolution of 4U2127+119 through its X-ray dip, to further understand the evolution process of LMXB systems with an accretion disc corona (ADC) structure. We analyzed 47 years of X-ray observations from 1977 to 2024, including data from ASCA, BeppoSAX, Chandra, EXOSAT, Ginga, HEAO-1, MAXI, RXTE, and XMM-Newton. Selecting X-ray dip as a fiducial point, we applied multi-sinusoidal fitting to determine the phase. Subsequently, we used Monte Carlo simulation to estimate the error. Finally, orbital parameters were derived based on linear and quadratic models.

    With more observation data, the linear model yielded an orbital period of $0.71302140(32)$ days. For the quadratic model, we obtained an orbital period derivative $\dot{P}/P=(1.42\pm1.01) \times 10^{-7}(yr^{-1})$, indicating that we did not detect a significant orbital period change, with $2\sigma$ upper limit of $2.02 \times 10^{-7}(yr^{-1})$. In LMXB systems with an ADC structure, the intrinsic luminosity $L_{int}$ is believed to approach the Eddington luminosity $L_{Edd}$ . By classifying the relationship between different intrinsic luminosities and the orbital period derivative, we concluded that tends to be a lower mass ratio(q ranging from 0.06 to 0.19), consistent with the results obtained by \hyperref[van Zyl2004]{van Zyl et al. (2004)}.

    摘要 i Abstract ii 致謝 iii 目錄 vii 圖目錄 x 表目錄 xi 第一章 緒論 (Introduction) 1 1.1 X光雙星 (X-ray Binary) 1 1.1.1 高質量X光雙星 (High Mass X-ray Binary) 1 1.1.2 低質量X光雙星 (Low Mass X-ray Binary) 2 1.2 4U2127+119之簡介 (Introduction to 4U2127+119) 4 1.3 論文概述 (Outline of the Thesis) 6 第二章 觀測資料與數據處理 (Observation and Data Reduction) 7 2.1 ASCA 8 2.1.1 ASCA裝置之簡介 (Introduction to ASCA Instruments) 9 2.1.2 觀測資料及數據處理 (Observation and Data Reduction) 9 2.2 BeppoSAX 11 2.2.1 BeppoSAX裝置之簡介 (Introduction to BeppoSAX Instruments) 12 2.2.2 觀測資料及數據處理 (Observation and Data Reduction) 12 2.3 Chandra 14 2.3.1 Chandra裝置之簡介 (Introduction to Chandra Instruments) 15 2.3.2 觀測資料及數據處理 (Observation and Data Reduction) 16 2.4 EXOSAT 19 2.4.1 EXOSAT裝置簡介 (Introduction to EXOSAT Instruments) 20 2.4.2 觀測資料及數據處理 (Observation and Data Reduction) 21 2.5 Ginga 22 2.5.1 Ginga儀器簡介 (Introduction to Ginga Instruments) 23 2.5.2 觀測資料及數據處理 (Observation and Data Reduction) 23 2.6 HEAO-1 25 2.6.1 HEAO-1裝置之簡介 (Introduction to HEAO-1 Instruments) 26 2.6.2 觀測資料及數據處理 (Observation and Data Reduction) 27 2.7 MAXI 29 2.7.1 MAXI裝置之簡介 (Introduction to HEAO-1 Instruments) 30 2.7.2 觀測資料及數據處理 (Observation and Data Reduction) 31 2.8 RXTE 32 2.8.1 RXTE裝置之簡介 (Introduction to RXTE Instruments) 33 2.8.2 觀測資料及數據處理 (Observation and Data Reduction) 34 2.9 XMM-Newton 36 2.9.1 XMM-Newton裝置之簡介 (Introduction to XMM-Newton Instruments) 37 2.9.2 觀測資料及數據處理 (Observation and Data Reduction) 38 第三章 數據分析 (Data Analysis) 40 3.1 疊合光變曲線 (Folded Light Curve) 41 3.2 多重正弦擬合 (Multi-Sinusoidal Fitting) 43 3.3 蒙地卡羅模擬 (Monte Carlo Simulation) 44 3.4 相位演化及星曆表 (Phase Evolution and Ephemeris) 46 第四章 討論 (Discussion) 50 4.1 軌道角動量損失 $\dot{J}_{orb}$ 與軌道週期變化率 $\dot{P}_{orb}$ 之間的關係 (The Relation between Orbital Angular Momentum Loss and Orbital Period Derivative) 51 4.2 質量守恆 (Mass Conserved Case) 53 4.3 其他造成週期變化率可能的原因 (Other Possible Causes of Period Derivative) 55 第五章 總結 (Summary) 56 參考文獻 (References) 57 附錄 (Appendix) 59

    \label{chap:references} %
    \begin{itemize}
    \item \href{https://ui.adsabs.harvard.edu/abs/1984A%26A...138..415A/abstract}{Aurière, M. et al. 1984, A\&A, 138, 415}\label{Aurière1984}
    \item \href{https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.5957B/abstract}{Baumgardt, H. \& Vasiliev, E. 2021, MNRAS, 505, 5957}\label{Baumgardt2021}
    \item Bevington, P. R. \& Robinson, D. K. 1992, ''Data reduction and error analysis for the physical sciences third edition''\label{Bevington1992}
    \item \href{https://ui.adsabs.harvard.edu/abs/1997A%26AS..122..327B/abstract}{Boella, G. et al. 1997, A\&AS, 122, 327}\label{Boella1997}
    \item \href{https://ui.adsabs.harvard.edu/abs/1986Natur.323..417C/abstract}{Charles, P. A. et al. 1986, Nature, 323, 417}\label{Charles1986}
    \item Charles, P. A. \& Seward, F. D. 1995, ''Exploring the X-ray Universe'', Cambridge Univ. Press\label{SewardCharles1995}
    \item \href{https://ui.adsabs.harvard.edu/abs/1990Natur.347..534D/abstract}{Dotani, T. et al. 1990, Nature, 347, 534}\label{Dotani1990}
    \item \href{https://ui.adsabs.harvard.edu/abs/1985ApJS...58..225F/abstract}{Fahlman, G. G. et al. 1985, ApJS, 58, 225}\label{Fahlman1985}
    \item \href{https://ui.adsabs.harvard.edu/abs/1987A%26A...178..137F/abstract}{Frank, J. et al. 1987, A\&A, 178, 137}\label{Frank1987}
    \item \href{https://ui.adsabs.harvard.edu/abs/1987ApJ...315L.119H/abstract}{Hertz, P. 1987, ApJ, 315, L119}\label{Hertz1987}
    \item \href{https://ui.adsabs.harvard.edu/abs/1998NewA....3..435H/abstract}{Homer, L. \& Charles, P.A. 1998, New Astron., 3, 435}\label{Homer1998}
    \item \href{https://ui.adsabs.harvard.edu/abs/1987A%26A...179L...1I/abstract}{Ilovaisky, S. A. et al. 1987, A\&A, 179, L1}\label{Ilovaisky1987}
    \item \href{https://ui.adsabs.harvard.edu/abs/1993A%26A...270..139I/abstract}{Ilovaisky, S. A. et al. 1993, A\&A, 270, 139}\label{Ilovaisky1993}
    \item \href{https://ui.adsabs.harvard.edu/abs/2002A%26A...382..130I/abstract}{Ioannou, Z. et al. 2002, A\&A, 382, 130}\label{Ioannou2002}
    \item \href{https://ui.adsabs.harvard.edu/abs/1995CAS....26.....L/abstract}{Lewin, W. H. G. et al. 1995, in X-ray binaries, ed. W. H. G. Lewin, J. van Paradijs, \& E. P. J. van den Heuvel (Cambridge: Cambridge Univ. Press), 175 }\label{Lewin1995}
    \item \href{https://ui.adsabs.harvard.edu/abs/1988MNRAS.233..285N/abstract}{Naylor, T. et al., 1988, MNRAS, 233, 285}\label{Naylor1988}
    \item \href{https://ui.adsabs.harvard.edu/abs/1967AcA....17..287P/abstract}{Paczyński, B. 1967, Acta Astron., 17, 287}\label{Paczyński1967}
    \item \href{https://ui.adsabs.harvard.edu/abs/2012ApJ...755...52P/abstract}{Paizis, A. et al. 2012, ApJ, 755, 52}\label{Paizis2012}
    \item \href{https://ui.adsabs.harvard.edu/abs/2014ApJ...795..116P/abstract}{Peuten, M. et al. 2014, ApJ, 795, 116}\label{Peuten2014}
    \item \href{https://ui.adsabs.harvard.edu/abs/1990PASJ...42..633V/abstract}{van Paradijs, J. et al. 1990, PASJ, 42, 633}\label{van Paradijs1990}
    \item \href{https://ui.adsabs.harvard.edu/abs/2004MNRAS.350..649V/abstract}{van Zyl, L. et al. 2004, MNRAS, 350, 649}\label{van Zyl2004}
    \item \href{https://ui.adsabs.harvard.edu/abs/1981A%26A...100L...7V/abstract}{Verbunt, F. \& Zwaan, C. 1981, A\&A, 100, L7}\label{Verbunt1981}
    \item \href{https://ui.adsabs.harvard.edu/abs/2001ApJ...561L.101W/abstract}{White, N. E. \& Angelini, L. 2001, ApJ, 561, L101}\label{White2001}

    \end{itemize}

    QR CODE
    :::