跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝宗翰
Tsung-Han Hsieh
論文名稱: 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較
Design and Analysis of Plasmonic Waveguide Bends Using Conformal Mapping Incorporated with Transmission-Line Network Approach: Comparisons with Numerical Results
指導教授: 張殷榮
Yin-Jung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 表面電漿保角映射圓弧轉折結構
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中我們結合保角映射理論與傳輸線理論並首次應用於非對稱「金屬-多層介電質」表面電漿90度圓弧波導結構,並以此方法設計一能同時提供橫電(TE)模態與橫磁(TM)模態高傳輸效率之次波長圓弧波導。於此方法中,圓弧波導可運用保角映射理論等效成直線幾何結構,後續使用傳輸線法解析於保角映射後之折射率分佈下,導波模態之等效折射率並做後續之傳播損耗與模態轉換損耗之分析計算。
    研究中發現,當操作波長為1550 nm下,TM模態與TE模態隨銀厚度增加至100 nm後,其等效折射率之實部與虛部皆會收斂。理論分析中定義有效橫向寬度為保角映射後之橫向折射率分佈對映射後之轉彎結構各區域寬度之積分。將有效橫向寬度對不同轉彎半徑分析並與以有限時域差分(Finite-Different Time-Domain, FDTD)法為基礎之數值模擬相互比較後發現有效橫向寬度能物理性地描述TM模態於此非對稱「金屬-介電質」表面電漿90度圓弧轉彎結構之傳輸行為。將「直線波導-圓弧轉折波導-直線波導」經保角映射等效後可視為有效橫向寬度為「窄-寬-窄」之直線結構。而由寬至窄結構時會有部分能量逸散至空氣中。
    最佳化設計中,解析計算發現可將矽區域與二氧化矽區域寬度分別減少至150 nm與50 nm,並由功率移轉分析中發現可移去連接轉彎區域波導與輸出端模態轉換器之直線結構。最終可得在轉彎區域面積為0.2165微米平方下,TM模態與TE模態傳輸效率分別達到90.50 %與93.22 %。


    This thesis describes an analytical approach to analyze subwavelength 90̊ curved waveguide bend in an asymmetric metal/multi-insulator configuration. This approach employs the conformal mapping to first transform a curved waveguide bend into an equivalent straight waveguide structure and then calculate the modal index of the guided mode under the continuously-varying index profile using the transmission line network method. The propagation loss and mode transition loss along the curved waveguide bend are quantified accordingly.
    Based on the convergence of the attenuation constant at the operating wavelength of 1550 nm, the width of the silver region is set to 100 nm. We then define the effective transverse width as the integral of the transformed index profile over the transverse axis in the radial direction. When quantified as a function of the bending radius, the newly defined parameter is found to be in good agreement in tendency with the finite-difference-time-domain-method-based numerical simulations and can be used to describe physically the TM wave behavior along the curved bending. In general, the curved bending region along with the input/output straight sections can be treated conceptually as a structure composed of narrow, wide, narrow sections connected in sequence. Significant power loss occurs at the interface going from the wide section to the narrow section.
    Following the analytical analysis and power interchange studies, the width of silicon and silica regions are reduced to 150 nm and 50 nm, respectively, and the respective TM and TE transmissions could be up to 90.50% and 93.22% with a curved bending area of 0.2165 /mum^2.

    中文摘要 I Abstract II 謝誌 III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 介電質圓弧轉折波導 3 1.3.2 表面電漿圓弧轉折波導之發展 6 第二章 結構描述 9 2.1 表面電漿轉折波導結構 9 2.2 圓弧轉折結構之初步設計 11 第三章 圓弧轉折波導之等效直線結構理論 13 3.1 保角映射理論用於二維純量波動方程式 13 3.2「金屬-多層介電質」圓弧轉折結構之保角映射 17 3.3 均勻多層介質之等效傳輸線網路描述 19 3.4 橫向電磁場之分佈計算 22 第四章 結果與討論 27 4.1 研究方法流程與簡述 27 4.2 銀區域之寬度對等校折射率影響 28 4.3 矽寬度與二氧化矽寬度對傳播損耗之影響 29 4.4 波導模態轉換損耗 34 4.5 解析解與數值模擬結果之比較 37 4.5.1 解析解結果 37 4.5.2 數值模擬結果 43 4.6 模態在結構中傳輸之能量分析 54 4.6.1 TM模態在結構中傳輸之歸一化能量分布情形 55 4.6.2 TE模態在結構中傳輸之歸一化能量分布情形 57 4.7 最佳化結構設計 59 第五章 結論 63 參考文獻 65

    [1] H.-Y. Chen, C.-C. Chen, F.-K. Hsueh, J.-T. Liu, C.-Y. Shen, C.-C. Hsu, S.-L. Shy, B.-T. Lin, H.-T. Chuang, C.-S. Wu, C. Hu, C.-C. Huang, and F.-L. Yang, "16nm functional 0.039µm2 6T-SRAM cell with nano injection lithography, nanowire channel, and full TiN gate," IEDM, pp. 28.7.1-28.7.3, 2009.
    [2] R. W. Wood, "On remarkable case uneven distribution of light in a diffraction grating spectrum," Proc. Physical Soc., vol. 18, pp. 269-275, Jun. 1902.
    [3] R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev., vol. 106, pp. 874-881, Jun. 1957.
    [4] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. A: Hadrons Nucl., vol. 216, pp. 398-410, Jul. 1968.
    [5] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, New York: Springer, 1988.
    [6] 張勝雄、戴朝義, "奈米電漿子波導元件於積體光學之應用," 物理雙月刊, vol. 卅卷六期, pp. 631-642, 2008.
    [7] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B, vol. 73, pp. 035407, Jan. 2006.
    [8] E. A. J. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J., vol. 48, pp. 2103-2132, Mar. 1969.
    [9] M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron., vol. QE-11, pp. 75-83, Feb. 1975.
    [10] J. Chilwell and I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A, vol. 1, pp. 742-753, Jul. 1984.
    [11] W. Wang, H. J. Lee, and P. J. Anthony, "Planar silica-glass optical waveguides with thermally induced lateral mode confinement," J. Lightwave Technol., vol. 14, pp. 429-436, Mar. 1996.
    [12] E.-G. Neumann, "Curved dielectric optical waveguides with reduced transition losses," IEE Proc., vol. 129, pp. 278-280, Oct. 1982.
    [13] J. Yamauchi, M. Ikegaya, and H. Nakano, "Bend loss of step-index slab wave-guides with a trench section," Microw. Opt. Technol. Lett., vol. 5, pp. 251-254, Jun. 1992.
    [14] M. K. Smit, E. C. M. Pennings, and H. Blok, "A normalized approach to the design of low-loss optical wave-guide bends," J. Lightwave Technol., vol. 11, pp. 1737-1742, Nov. 1993.
    [15] C. H. Seo and J. C. Chen, "Low transition losses in bent rib waveguides," J. Lightwave Technol., vol. 14, pp. 2255-2259, Oct. 1996.
    [16] W. Berglund and A. Gopinath, "WKB analysis of bend losses in optical waveguides," J. Lightwave Technol., vol. 18, pp. 1161-1166, Mar. 2000.
    [17] I. Papakonstantinou, K. Wang, D. R. Selviah, and F. A. Ferandez, "Transition, radiation and propagation loss in polymer multimode waveguide bends," Opt. Express, vol. 15, pp. 669-679, Jan. 2007.
    [18] P. A. Anderson, B. S. Schmidt, and M. Lipson, "High confinement in silicon slot waveguides with sharp bends," Opt. Express, vol. 14, pp. 9197-9202, Oct. 2006.
    [19] L. Chen, B. Wang, and G. P. Wang, "High efficiency 90 degrees bending metal heterowaveguides for nanophotonic integration," Appl. Phys. Lett., vol. 89, pp. 243120, Dec. 2006.
    [20] Z. Sun, "Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding," Appl. Phys. Lett., vol. 91, p. 111112, Sep. 2007.
    [21] A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, "Simulations of hybrid long-range plasmon modes with application to 90 degrees bends," Opt. Lett., vol. 32, pp. 2354-2356, Aug. 2007.
    [22] A. V. Krasavin and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett., vol. 90, pp. 211101, May. 2007.
    [23] H. S. Chu, E. P. Li, P. Bai, and R. Hegde, "Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components," Appl. Phys. Lett., vol. 96, pp. 221103, May. 2010.
    [24] Y.-J. Chang and Y.-C. Liu, "Polarization-insensitive subwavelength sharp bends in asymmetric metal/multi-insulator configuration," Opt. Express, vol. 19, pp. 3063-3076, Feb. 2011.

    QR CODE
    :::