| 研究生: |
邱彥勛 Yan-Syun Ciou |
|---|---|
| 論文名稱: |
利用交叉脫氫耦合反應快速製備各式D-π-A有機染料分子:C-H/C-H合成法研究與其在染料敏化太陽能電池之應用 Cross-Dehydrogenative Coupling (CDC) as Key-Transformations to Various D-π-A Organic Dyes: C-H/C-H Synthetic Study and Dye-Sensitized Solar Cells Applications |
| 指導教授: |
劉青原
Ching-Yuan Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 199 |
| 中文關鍵詞: | 染料敏化太陽能電池 、交叉脫氫耦合反應 、D-π-A有機染料分子 、C-H/C-H合成法 |
| 外文關鍵詞: | Dye-Sensitized Solar Cells, Cross-Dehydrogenative Coupling, D-π-A Organic Dyes, C-H/C-H Synthetic Study |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在染料敏化太陽能電池中,全有機染料分子扮演非常關鍵的角色,而目前染料分子的合成方式主要經由多步驟的傳統合成法。本研究提出染料分子新的合成途徑,利用推電子 (Donor) 與拉電子 (Acceptor) 末端基上質子的酸度差異,進行鈀催化之交叉脫氫耦合反應(Cross-Dehydrogenative Coupling) ,合成各式非對稱D-π-A有機染料分子,此合成法不需在反應物上進行任何官能基化步驟,並具有優異的反應選擇性與官能基容忍度,為一具有高步驟經濟效益之染料合成法。
根據我們的合成方法,製備出三項新型的有機染料 (CYL-8, CTL-9, CYL-10),並組裝成染料敏化太陽能電池 (DSSCs) 的元件,所測得電池元件數據開路電壓為 (Voc) 0.62~0.68 V、短路電流 (Jsc) 5.51~10.10 mA/cm2、填充因子 (FF) 62.5~73.9 %、光電轉換效率 (PCE) 2.25~4.85 %。本研究提供了更快速的有機染料合成法,使得染料敏化太陽能電池的應用更具競爭力。
Palladium-catalyzed cross-dehydrogenative coupling between donor and acceptor-type molecules was developed for the first time to construct organic donor-π-linker-acceptor (D-π-A) dyes in the presence of pyridine and Cu(OAc)2. The advantages of this reaction are its high reaction efficiency, high regioselectivities, excellent functional group tolerance, and synthetic simplicity from the omission of the pre-functionalization. The features of this protocol make it an ideal strategy for synthesizing D-π-A dyes of interest in dye-sensitized solar cells (DSSCs).
Through our methodology, three new sensitizers (CYL-8, CYL-9, and CYL-10) were prepared and employed to fabricate DSSCs. The photovoltaic characterization of the devices affords a Voc of 0.62-0.68 V, a Jsc of 5.51-10.10 mA/cm2, and a FF of 62.5-73.9 %, which correspond to an overall power conversion efficiency of 2.25-4.85 %. Our aim of presenting this method was to provide practical and step-saving access to various of D-π-A-type molecules for photovoltaic applications.
[1]Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676-677.
[2]National Renewable Energy Laboratory http://www.nrel.gov/ncpv/
[3]Gerischer, H. M.; Michel-Beyerle, E.; Rebentrost, F.; Tributsch, H. Electrochim. Acta 1968, 13, 1509-1515.
[4]Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261, 402-403.
[5]O’Regan, B.; Grätzel, M. Nature 1991, 353, 737-740.
[6]Nazeeruddin, M. K.; Péchy, P.; Liska, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613-1624.
[7]Grätzel, M. J. Photochem. Photobiol. A 2004, 164, 3-14.
[8]Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835-16847.
[9]Wang, C.-L.; Hu, J.-Y.; Wu, C.-H.; Kuo, H.-H.; Chang, Y.-C.; Lan, Z.-J.; Wu, H.-P.; Diau, E. W.-G.; Lin, C.-Y. Energy Environ. Sci. 2014, 7, 1392-1396.
[10]Bessho, T.; Zakeeruddin, S. M.; Yeh, C.-Y.; Diau, E. W.-G.; Grätzel, M. Angew. Chem. Int. ed. 2010, 49, 6646-6649.
[11]Hara, K.; Sayama, K.; Arakawa, H.; Ohga, Y.; Shinpo, A.; Suga, S. Chem. Commun. 2001, 569-570.
[12]Hara, K.; Tachibana, Y.; Ohga, Y.; Shinpo, A.; Sayama, S.; Sugihara, H.;
Arakawa, H. Sol. Energy Mater. Sol. Cells 2003, 77, 89-103.
[13]Hara, K.; Kurashige, M.; Oh, Y. D.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. New J. Chem. 2003, 27, 783-785.
[14]Venkateswararao, A.; Thomas, K. R. Cell Nanotechnology 2013, 41-96.
[15]Mahmood, A. Solar Energy 2016, 123, 127-144.
[16]Huang, Z.-S.; Meier, H.; Cao, D. J. Mater. Chem. C 2016, 4, 2404-2426.
[17]Hao, Y.; Yang, X.; Cong, J.; Hagfeldt, A.; Sun, L. Tetrahedron 2012, 68, 552-558.
[18]Choi, H., Baik, C., Kang, S. O., Ko, J., Kang, M. S., Nazeeruddin, M. K., Grätzel, M. Angew. Chem. Int. Ed. 2008, 120, 333-336.
[19]Kitamura, T.; Ikeda, M.; Lian, T.; Yanagida, S. Chem Mater 2004, 16: 1806-1812.
[20]Wang, M.; Xu, M. F., Shi, D.; Li, R. Z.; Gao, F. F.; Zhang, G. L.; Yi, Z. H.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S.; Gratzel, M. Adv Mater 2008, 20, 4460-4463.
[21]Li, R. Z.; Lv, X. J.; Shi, D.; Zhou, D. F.; Cheng, Y. M.; Zhang, G. L.; Wang, P. J. Phy.s Chem. C 2009, 113, 7469-7479.
[22]Yen, Y.-S.; Hsu, Y.-C.; Lin, J. T.; Chang, C.-W.; Hsu, C.-P.; Yin, D.-J. J. Phys. Chem. C 2008, 112, 12557-12567.
[23]Ho, P.-Y.; Siu, C.-H.; Yu, W.-H.; Zhou, Y. P.; Chen, T.; Ho, C.-L.; Lee, L. T. L.; Feng, Y.-H.; Liu, J.; Han, K.; Lo, Y. H.; Wong, W.-Y. J. Mater. Chem. C, 2016, 4, 713-726.
[24]Zhou, D. F.; Cai, N.; Long, H. J.; Zhang, M.; Wang, Y. H.; Wang, P. J Phys Chem C, 2011, 115, 3163-3171.
[25]Zhang, L.; Cole, J. M. ACS Appl. Mater. Interfaces, 2015, 7, 3427-3455.
[26](a) Wu, Y.; Zhu, W. Chem. Soc. Rev. 2013, 42, 16376-16379. (b) Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Li, X.; Chen, J.; Wang, Z.-S.; Tian, H. Adv. Funct. Mater. 2011, 21, 756-763.
[27]Zeng, W. D.; Cao, Y. M.; Bai, Y.; Wang, Y. H.; Shi, Y.; Zhang, M.; Wang, F. F.; Pan, C.; Wang, P. Chem. Mater. 2010, 22, 1915-1925.
[28]Pei, K.; Wu, Y.; Islam, A.; Zhang, Q.; Han, L.; Tian, H.; Zhu, W. ACS Appl. Mater. Interfaces 2013, 5, 4986-4995.
[29]Zhu, H.; Wu, Y.; Liu, J.; Zhang, W.; Wu, W.; Zhu, W.-H. J. Mater. Chem. A, 2015, 3, 10603-10609.
[30]Kang, X.; Zhang, J.; O Neil, D.; Rojas, A. J.; Chen, W.; Szymanski, P.; Marder, S. R.; El-Sayed, M. A. Chem. Mater. 2014, 26, 4486-4493.
[31]Choi, H.; Lee, J. K.; Song, K.; Kang, S. O.; Ko, J. Tetrahedron 2007, 63, 3115-3121.
[32]Tamba, S.; Fujii, R.; Mori, A.; Hara, K.; Koumura, N. Chem. Lett. 2011, 40, 922-924.
[33]Schipper, D. J.; Fagnou, K.; Chem. Mater. 2011, 23, 1594-1600.
[34]Zhang, J.; Chen, W.; Rojas, A. J.; Jucov, E. V.; Timofeeva, T. V.; Parker, T. C.; Barlow, S.; Marder, S. R.; J. Am. Chem. Soc. 2013, 135, 16376-16379.
[35]Lin, P.-H.; Lu, T.-J.; Cai, D.-J.; Lee, K.-M.; Liu, C.-Y. ChemSusChem 2015, 8, 3222-3227.
[36]Masui, K.; Ikegami, H.; Mori, A. J. Am. Chem. Soc. 2004, 126, 5074-5075.
[37]Li, N.-N.; Zhang, Y.-L.; Mao, S.; Gao, Y.-R.; Guo, D.-D.; Wang, Y.-Q. Org. Lett. 2014, 16, 2732-2735.
[38]He, C.-Y.; Wang, Z.; Wu, C.-Z.; Qingab, F.-L.; Zhang, X. Chem. Sci. 2013, 4, 3508-3513.
[39]Storr, T. E.; Namata, F.; Greaney, M. F. Chem. Commun. 2014, 50, 13275-13277.
[40]He, C.-Y.; Min, Q.-Q.; Zhang, X. Organometallics 2012, 31, 1335-1340.
[41]Zhou, H.; Gai, K.; Lin, A.; Xu, J.; Wu, X.; Yao, H. Org. Biomol. Chem. 2015, 13, 1243-1248.
[42]Zhang, C.; Rao, Y. Org. Lett. 2015, 17, 4456-4459.
[43]Fournier, D.; Romagne, M.-L.; Pascual, S.; Montembault, V.; Fontaine, L. Eur. Polym. J. 2005, 41, 1576-1581.
[44]Li, J.-H.; Liu, W.-J. Org. Lett. 2004, 6, 2809-2811.
[45](a) Ferreira, E. M.; Stoltz, B. M.; J. Am. Chem. Soc. 2003, 125, 9578-9579. (b) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072–5074.
[46]Chang, S.-Y.; Lin, P.-H.; Liu, C.-Y. RSC Adv. 2014, 4, 35868-35878.
[47]Robson, K. C. D.; Hu, K.; Meyer, G. J.; Berlinguette, C. P.; J. Am. Chem. Soc. 2013, 135, 1961-1971.
[48](a) Zhang, Y.; Hau, S. K.; Yip, H.-L.; Sun, Y.; Acton, O.; Jen, A. K. Y. Chem. Mater. 2010, 22, 2696-2698. (b) Zou, Y.; Najari, A.; Berrouard, P.; Beaupré, S.; Réda Aïch, B.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2010, 132, 5330-5331. (c) Chu, T.-Y.; Lu, J.; Beaupré, S.; Zhang, Y.; Pouliot, J.-R.; Wakim, S.; Zhou, J.; Leclerc, M.; Li, Z.; Ding, J.; Tao, Y. J. Am. Chem. Soc. 2011, 133, 4250-4253. (d) Lin, Y.; Cheng, P.; Liu, Y.; Zhao, X.; Li, D.; Tan, J.; Hu, W.; Li, Y.; Zhan, X. Sol. Energy Mater. Sol. Cells 2012, 99, 301-307.
[49]Chen, C.-H.; Hsu, Y.-C.; Chou, H.-H.; Thomas, K. R. J.; Lin, J. T.; Hsu, C.-P. Chem. Eur. J. 2010, 16, 3184-3193.
[50]Liu, C.-Y.; Konchel, P. Org. Lett. 2005, 7, 2543-2546.
[51]Ho, P.-Y.; Siu, C.-H.; Yu, W.-H.; Zhou, P.; Chen, T.; Ho, C.-L.; Lee, L. T. L.; Feng, Y.-H.; Liu, J.; Han, K.; Lo, Y. H.; Wong, W.-Y.; J. Mater. Chem. C 2016, 4, 713-726.
[52]Deng, Y.; Yuan, W.; Jia, Z.; Liu, G. J. Phys. Chem. B 2014, 118, 1453614545.
[53]Robson, K. C.; Hu, K.; Meyer, G. J.; Berlinguette, C. P. J. Am. Chem. Soc. 2013, 135, 1961-1971.
[54]Gupta, A.; Ali, A.; Bilic, A.; Gao, M.; Hegedus, K.; Singh, B.; Watkins, S. E.; Wilson, G. J.; Bach, U.; Evans, R. A. Chem. Commun., 2012, 48, 1889-1891.
[55]Chang, Y. J.; Chow, T. J. Tetrahedron 2009, 65, 9626-9632.
[56]Lin, P.-H.; Lu, T.-J.; Cai, D.-J.; Lee, K.-M.; Liu, C.-Y. ChemSusChem 2015, 8, 3222-3227.
[57]Wu, C. G.; Shieh, W. T.; Yang, C. S.; Tan, C. J.; Chang, C. H.; Chen, S. C.; Wu, C. Y.; Tsai, H. H. G. Dyes Pigments 2013, 99, 1091-1100.
[58]Barea, E. M.; Zafer, C.; Gultekin, B.; Aydin, B.; Koyuncu, S.; Icli, S.; Santiago, F. F.; Bisquert, J. J. Phys. Chem. C 2010, 114, 19840-19848.
[59]Yang, Y. S.; Kim, H. D.; Ryu, J.-H.; Kim, K. K.; Park, S. S.; Ahn, K.-S.; Kim, J. H. Synth. Met. 2011, 161, 850-855.
[60]Lu, G.-P.; Cai, C.; Lipshutz B. H. Green Chem. 2013, 15, 105-109.
[61]Trippe-Allard, G.; Lacroix, J.-C. Tetrahedron 2013, 69, 861-866.
[62]盧德睿,利用碳氫鍵芳香環化反應高效率合成小分子有機半導體材料之末端基與其在染料敏化太陽能電池之應用,國立中央大學化材所碩士論文,民國104年。