跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃玫婷
Mei-Ting Hunag
論文名稱: 亮紅外星系 NGC 6090 中分子氣體之研究
Molecular Gas in Luminous Infrared Galaxy NGC 6090
指導教授: 黃崇源
Chorng-Yuan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
畢業學年度: 90
語文別: 英文
論文頁數: 37
中文關鍵詞: 分子氣體亮紅外星系交互作用星系星遽增星系
外文關鍵詞: molecular gas, luminous infrared galaxies, interacting galaxies, starburst galaxies
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們利用多波段觀測來研究分析亮紅外星系NGC 6090。 NGC 6090星系的紅外亮度 (LIR=3×10^11 L⊙) 大約是Milky Way的三十倍。一般相信這麼強的紅外亮度的機制是由於兩星系交互作用,觸發星遽增現象,新生恆星加熱周圍的灰塵,因而發出許多紅外線的輻射。星遽增大多存在高密度的分子雲中,因此,我們利用BIMA毫米波陣列觀測CO J =1–0旋轉譜線,研究NGC 6090中的分子氣體。另外,我們利用UKIRT觀測的H2 ν=1–0 S(1)振轉譜線,研究 NGC 6090 中較溫暖的分子氣體。為了進一步討論 NGC 6090 中分子氣體與恆星形成區的關係,我們也分析了VLA 1.49 GHz無線電連續譜,以及HST 1.1 μm高解析度影像。
    NGC 6090星系中的分子雲質量約為3.2×10^11 M⊙,和FCRAO單碟天線推得的值相當接近,表示NGC 6090中彌散的大結構分子雲極少,大多分子雲都集中在交互作用中心。此外,分子雲質量約為動力質量的2.9倍,我們推測這個不合理的現象應該是傾角效應與轉換係數所造成。而經過傾角效應與轉換係數修正後的surface filling factor仍然是Milky Way的4.5倍,表示NGC 6090中分子雲比Milky Way密集的多。
    儘管1.49 GHz連續譜與高密度的分子雲在空間上沒有很好的相關性,但由(1)恆星形成區的位置,以及(2)星遽增的年齡,我們推測在交互作用剛開始時,分子雲會向星系中心集中,並觸發星遽增,兩星系進一步交互作用後,分子雲則開始向交互作用中心聚集。
    NGC 6090中較溫暖的分子氣體質量約為1070 M⊙。空間分布上,除了東側星系北方類似旋臂構造之外,在東側星系靠近交互作用中心和兩星系之間都存在較冷與較溫暖的分子氣體,大多為溫度較冷的分子氣體。在論文中我們也討論到處在旋臂構造和交互作用中心不同的激發機制。


    We analyze multiwavelength observations of the luminous infrared galaxy (LIRGs) NGC 6090.
    The infrared luminosity of NGC 6090, LIR=3×10^11 11 L⊙, is about 30 times larger than
    the Milky Way. Since the star formation is much related to molecular gas, we observed CO
    J=1–0 line emission with the Berkeley Illinois Maryland Association (BIMA) array
    to study the molecular gas in NGC 6090. We also analyze UKIRT H_2 ν=1-0 S(1) line emission
    to find the distribution of warm molecular gas. For further analyses of the starburst regions,
    we present VLA 1.49 GHz (20 cm) continuum and high resolution HST 1.1-μm image as well.
    The cold molecular mass traced by CO is 3.2×10^11 M⊙, which is very close to the value
    estimated by the single-dish observation (FCRAO, Young et al. 1995). It means that the molecular gas
    in NGC 6090 is highly concentrated in the central region of the interacting system. Besides,
    the molecular mass is ~ 2.9 times larger than the dynamical mass. Such a unphysical result
    might be due to a combination of two effects, inclination and conversion factor. The surface
    filling factor is still ~ 4.5 times larger than that of the Milky Way after corrected by
    inclination and conversion factor.
    Although the 20 cm radio continuum does not have fine correlation with high-density molecular gas,
    we suggest the molecular gas might trigger the starburst in NGC 6090. During merging process,
    the molecular gas is concentrated into the center of the two galaxies, trigger the starburst, and
    then fall into the center of the interacting system. In proof of this suggestion, we argue the
    time scale of the falling and the starburst age of NGC 6090.
    The warm molecular mass traced by H2 is ~ 1070 M⊙. In addition to the starburst regions
    of the east galaxy near the center of interacting system, the warm molecular gas is distributed
    over almost the same regions with cold molecular gas. In NGC 6090 most molecular gas exist in the
    form of cold H2 gas as compared with warm gas. We also discuss the different excitation mechanisms
    of H2 in the central region and the east galaxy, respectively.

    ABSTRACT 1 INTRODUCTION 2 OBSERVATIONS AND DATA REDUCTION 3 RESULTS AND DISCUSSION 4 CONCLUSIONS

    Acosta-Pulido, J. A., Klaas, U., Laureijs, R. J., Schulz, B., Kinkel, U., Abraham, P., Castaneda, H. O., Cornwall, L., Gabriel, C., Heinrichsen, I., Herbstmeier, U., Kruger, H., & Pelz, G. 1996, A&A, 315, 121
    Batuski, D. J., Hanisch, R. J., & Burns, J. O. 1992, AJ, 103, 1077
    Bloemen, J. B. G. M., Strong, A. W., Mayer-Hasselwander, H. A., Blitz, L., Cohen, R. S., Dame, T. M., Grabelsky, D. A., Thaddeus, P., Hermsen, W., & Lebrun, F., A&A, 154, 25
    Braine, J., Combes F., Casoli, F., Dupraz C., Gerin, M. 1993, A&AS, 97, 887
    Bryant, P. M. & Scoville, N. Z. 1999, ApJ, 117, 2632
    Burton, M. G., Geballe, T. R., Brand, P. W. J. L., & Webster, A. S. 1988, MNRAS, 231, 617
    Calzetti, D., Kinney, A. L. 1992, ApJ, 399, 39
    Condon, J. J., Condon, M. A., Gisler, G., & Puschell, J. J. 1982, ApJ, 252, 102
    Condon, J. J. & Dressel, L. L. 1978, ApJ, 221, 456
    Condon, J. J., Helou, G., Sanders, D. B., & Soifer, B. T. 1990, ApJS, 73, 359
    Devereux, N., Taniguchi, Y., Sanders, D. B., Nakai N., & Young J. S. 1994, AJ, 107, 2006
    Dickman, R. L., ApJS, 37, 407
    Dickman, R. L., Snell, R. L., & Schloerb, F. P. 1986, ApJ, 309,326
    Dinshaw, N. D., Evans, A. S., Epps, H., Scoville, N. Z., & Rieke, M 1999, ApJ, 525, 702
    Downes, D., & Solomon, P. M. 1998, ApJ, 507, 615
    Downes, D., Solomon, P. M., & Radford, S. J. E. 1993, ApJ, 414, L13
    Draine, B. T., Roberge, W. G., Dalgarno A. 1983, ApJ, 264, 485
    Draine, B. T., & Salpeter, E. E. 1974, ApJ, 231, 438
    Draine, B. T., & Woods, D. T. 1990, ApJ, 363, 464
    Efstathiou, A., Rowan-Robinson, M., & Siebenmorgen, R. 2000, MNRAS, 313, 734
    Eugene de Geus 1991, Mapping BIMA Data with MIRIAD: A Cookbook, See http://bima.astro.umd.edu/memo/memo.html
    Garcia-Burillo, S., Guelin, M., & Cernicharo, J. 1993, A&A, 274, 123
    Genzel, R., Lutz, D., Sturm, E., Egami, E., Kunze, D., Moorwood, A. F. M., Rigopoulou, D., Spoon, H. W. W., Sternberg, A., Tacconi-Garman, L. E., Tacconi, L., & Thatte, N.1998, ApJ, 498, 579
    Goldreich, P., and Kwan, J., 1974, ApJ, 189, 441
    Hummel, E. 1980, ApJ, 89, L1
    Hunt, L. K., Malkan, M. A., Salvati, M., Mandolesi, N., Palazzi, E., & Wade, R. 1997, ApJS, 108, 229
    Joseph, R. D., & Wright, G. S. 1985, MNRAS, 214, 87
    Kim, D. C. 1995, The IRAS 1 jy survey of ultraluminous infrared galaxies, PhD thesis, Univ. Hawaii
    Krichbaum, T. P., Graham, D. A., Greve, A., Wink, J. E., Alcolea, J., Colomer, F., de Vicente, P., Baudry, A., Gomez-Gonzalez, J., Grewing, M., & Witzel, A. 1997, A&A, 323, L17
    Larson, R. B., & Tinsley, B. M. 1978, ApJ, 219, L46
    Liszt, H. S., Xiang, D., & Burton, W. B. 1981, ApJ, 249, 532
    Lutz, D., Spoon, H. W. W., Rigopoulou, D., Moorwood, A. F. M., & Genzel, R. 1998, ApJ, 505, 103
    Mazzarella, J. M., & Boroson, T. A. 1993, ApJ, 85, 27
    McKee, C. F., & Ostriker, J. P. 1977, ApJ, 218, 148
    Moorwood, A. F. & Oliva, E. 1988, A&A, 203, 278
    Radford, S. J. E., Solomon P. M., & Downes D. 1991, ApJ, 368L, 15
    Regan, M. W. 1995, A Cookbook for Reducing BIMA Data using MIRIAD, See http://bima.astro.umd.edu/memo/memo.html
    Ridgway, S. E. & Wynn-Williams, C. G. 1994, ApJ, 428, 609
    Rieke, G. H., Curti, R. M., Black, J. H., Kailey, W. F., McAlaray, C. W., Lebofsky, M. J., and Elston, R. 1985, ApJ, 290, 116
    Rigopoulu, D., Lawrence A., White, G. J., Rowan-Robinson, M., & Church, S. E. 1996b, A&A, 305, 747
    Sanders, D. B., & Mirabel, I. F. 1996, ARA&A, 34, 749
    Sanders, D. B., Sargent, A. I., Scoville, N. Z., Phillips, T. G., 1990, In Submillimeter Astronomy, ed. Watt, G. D., Webster, A., p. 213
    Sanders, D. B., Scoville, N. Z., & Soifer, B. T. 1991, ApJ, 370,158
    Sanders, D. B., Soifer, B. T., Elias, J. H., Madore, B. F., Matthews, K., Neugebauer, G., & Scoville, N. Z. 1988, ApJ, 325, 74
    Sanders, D. B., Soifer, B. T., Elias, J. H., Neugebauer, G., Matthews K., et al. 1988b, ApJ, 328L, 35
    Sault, B. & Killeen, N. 1998, See http://www.atnf.csiro.au/computing/software/miriad
    Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, A Retrospective View of Miriad}, Astronomical Data Analysis Software and Systems IV; ASP Conference Series, Vol. 77, 1995; R. A. Shaw, H. E. Payne, and J. J. E. Hayes, eds.
    Scoville, N. Z., et al. 1999, AJ, submitted
    Scoville, N. Z., & Solomon, P. M., 1974, ApJ, 187, L67
    Smith, Harding E., Lonsdale, Carol J., Lonsdale, Colin J., & Diamond, Philip J. 1998, ApJ, 493, L17
    Solomon, P. M., Radford, S. J. E., & Downes, D. 1990, ApJ, 348, L53
    Solomon, P. M., Rivolo, A. R., Barrett, J. W., & Yahil, A. 1987, ApJ, 319, 730
    Solomon, P. M., Rivolo, A. R., Mooney, T. J., Barrett, J. W., & Sage, L. J. 1986, Star Formation in Galaxy, ed. C. Lonsdale (Washington, DC: US GPO), 37
    Sternberg, A. & Dalgarno, A. 1989, ApJ, 338, 197
    Sugai, H., Davies, R. I., Ishii, M., & Ward, M. J. 2000, MNRAS, 317, 447
    Sugai, H., Davies, R. I., Malkan M. A., McLean I. S., Usuda T., & Ward M. J. 1999, ApJ, 527, 778
    Tacconi, L. J., Genzel, R., Tecza, M., Gallimore, J. F., Downes, D., Scoville, & N. Z. 1999, ApJ, 524, 732
    Taniguchi, Y., Kawara, K., Nishida, M., Tamura, S., & Nishida, M. T. 1988, AJ, 95, 1378
    Toomre, A. & Toomre, J. 1972, ApJ, 178, 623
    Turner, J. , Kirby-Docken, K., & Dalgarno, A. 1977, ApJ, 35, 281
    Veilleux, S., Kim, D. -C., Sanders, D. B., Mazzarella, J. M., & Soifer, B. T. 1995, ApJS, 98, 171
    Welch, W. J. et al. 1996, PASP, 108, 93
    Young, J. S. & Scoville, N. Z. 1991, ARA&A, 29, 581
    Young, J. S., Xie, S., Tacconi, L., Knezek, P., & Viscuso, P. 1995, ApJS, 98, 219

    QR CODE
    :::