| 研究生: |
蔡偉林 Wei-Lin Tsai |
|---|---|
| 論文名稱: |
以麥克風陣列與噪音消除為前處理的人工電子耳雙耳聽模擬在噪音環境下對中文語音辨識率之影響 Pre-processing with Microphone Array and Noise Reduction for Electroacoustic Stimulation of Cochlear Implant Simulation on Chinese Speech Recognition in Noise |
| 指導教授: |
吳炤民
Chao-Min Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 助聽器 、人工電子耳 、進階結合編碼策略 、麥克風陣列 、訊噪比 、噪音消除 |
| 外文關鍵詞: | Microphone Array, ACE, Hearing Aid, Cochlear Implant, SNR, Noise Reduction |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的在於探討以麥克風陣列和噪音消除策略為前處理的人工電子耳雙耳聽模擬在噪音環境下對中文語音辨識率之影響。本論文中人工電子耳模擬是採用進階結合編碼策略(Advanced Combination Encoding, ACE),助聽器則是以一個截止頻率為500Hz的低通濾波器模擬,前處理的部分包括兩種不同的麥克風策略(Mic.)和兩種不同的麥克風策略加噪音消除策略(Mic.+NR),對十位聽力正常成年人(九男ㄧ女)做語音辨識率的測試。實驗中所使用的訊噪比分別為 -5dB和0dB,語料則有雙字詞與句子兩種加語音噪音。受測者進行單獨人工電子耳和人工電子耳結合助聽器的模擬實驗。在單獨人工電子耳的情況下,語料有經過前處理(雙字詞:50%,句子:42%)和沒有經過前處理(雙字詞:17%,句子:22%)的語音辨識率之間有顯著差異(p <0.001),同樣的在人工電子耳結合助聽器的情況下,語料是否經過前處理(雙字詞:93%、61%,句子:97%、79%)的語音辨識率之間也存在著顯著差異(p <0.001)。而人工電子耳結合助聽器和單獨人工電子耳在有經過前處理的雙字詞和句子實驗中平均辨識率呈現出顯著差異(p <0.001)。另外在麥克風策略和麥克風策略加噪音消除策略之間的辨識率,不論是在單獨人工電子耳(Mic:47% , Mic.+NR:44%)或是人工電子耳結合助聽器(Mic:95% , Mic.+NR:95%)的實驗中都沒有顯著差異(p > 0.05)。由上述可以得知,不論是在單獨人工電子耳或是人工電子耳結合助聽器的情況下,有經過前處理和沒經過前處理的語音辨識率之間存在著顯著差異,但是增加噪音消除策略主要是增加聆聽舒適度而非改善語音辨識率。
The purpose of this study is to investigate the pre-processing with microphone array and noise reduction for electroacoustic stimulation of cochlear implant (CI) simulation on Chinese speech recognition in noise. We used advanced combination encoding as the speech processing strategy to simulate the cochlear implant and a low-pass filter with the cut-off frequency of 500 Hz for the hearing aid (HA). Four pre-processors (two different microphone arrays, Mic. and these two microphone arrays plus two noise reduction strategies, Mic.+NR) were implemented in this study. There were 10 adults (9 males and one female) with normal hearing participating in the experiment. We used disyllabic words and sentences combined with speech-shaped noise (SSN) as test materials (signal-to-noise ratio, SNR of -5dB and 0dB) in all experiments. All the subjects attended two experiments: one is CI only and the other, CI combined with hearing aid (CI+HA). In the CI only experiment, average speech recognition rates of the test materials (word and sentence) with pre-processing (word: 50%, sentence: 42%) and those without pre-processing (word: 17%, sentence: 22%) were significantly different (p<0.001). Additionally, there were significant difference (p < 0.001) between the average speech recognition rates of the test materials with pre-processing (word: 93%, sentences: 97%) and those without pre-processing (word: 61%, sentences: 79%) in the CI+HA experiment.
The average speech recognition rates between CI+HA and CI only showed significant differences (p <0.001) between CI+HA and CI only irrespective of the test materials and the pre-processing strategies. However, average speech recognition rates between pre-processors with microphone arrays and microphone arrays plus noise reduction strategies showed no significant differences (p > 0.05), no matter under the experiment of CI only (Mic.: 47%, Mic.+NR: 44%) or CI combined with HA (Mic.: 95%, Mic.+NR: 95%). In summary, our results implied that there are significant differences between the speech recognition rates of the test materials with pre-processing and those without pre-processing in both experiments. However, our data also showed that noise reduction strategies are used to improve listening comfort for the subjects instead of improving speech recognition rates.
Barthel, R., Bauml, R., and Fischer, E. (2008). "Differential directional microphone system and hearing aid device with such a differential directional microphone system," Siemens corporation, United States
Patent, US 2008/0212814 Al.
Berghe, J. V., and Wouters, J. (2005). "Hearing aid with adaptive noise canceller," United States Patent, US 6,888,949 Bl.
Bhattacharya, A. and Zeng, F.-G. (2007). "Companding to improve cochlear-implant speech recognition in speech-shaped noise," Journal of the Acoustical Society of America 122(2), 1079-1089.
Chen, F. "Predicting the Intelligibility of Cochlear-implant Vocoded Speech from Objective Quality Measure," Journal of Medical and Biological Engineering, In Press Uncorrected Proof, Available online.
Ching, T. Y. C., Incerti,P., and Hill, M. (2004). "Binaural Benefits for Adults Who Use Hearing Aids and Cochlear Implants in Opposite Ears," Ear & Hearing 25, 9-21.
Chung, K. and Zeng, F.-G. (2009). "Using hearing aid adaptive directional microphones to enhance cochlear implant performance," Hearing Research 250(1-2), 27-37.
Chung, K., Zeng, F.-G., and Acker, K. N. (2006). "Effects of directional microphone and adaptive multichannel noise reduction algorithm on cochlear implant performance," Journal of the Acoustical Society of America 120(4), 2216-2227.
Chung, K., Zeng, F.-G., and Waltzman, S. (2004). "Using hearing aid directional microphones and noise reduction algorithms to enhance cochlear implant performance," Acoustical Society of America 5(2), 56-61.
Fang, X., and Nilsson, M. J. (2004). "Noise reduction apparatus and method," Sonic Innovations, Inc, United States Patent, US 6757395 B1.
Fu, Q.-J., Hsu, C.-J., and Horng, M.-J. (2004). "Effects of Speech Processing Strategy on Chinese Tone Recognition by Nucleus-24 Cochlear Implant Users," Ear & Hearing 25, 501-508.
Fu, Q.-J., Shannon, R. V., and Wang, X. (1998). "Effects of noise and spectral resolution on vowel and consonant recognition: Acoustic and electric hearing," Journal of the Acoustical Society of America 104(6), 3586-3596.
Gopalakrishna, V., Kehtarnavaz, N., and Loizou, P. C. (2010). "A recursive wavelet-based strategy for real-time cochlear implant speech processing on PDA platforms," IEEE Transactions on Biomedical Engineering 57(8), 2053-2063.
Hamacher, V., W. H. Doering, Mauer, G., Fleischmann, H., and Hennecke, J. (1997). "Evaluation of Noise Reduction Systems for Cochlear Implant Users in Different Acoustic Environment," The American Journal of Otology 18(suppl), S46-S49.
Hansen, M. (2009). "Hearing aid and a method for enhancing speech intelligibility," United States Patent, US 7,599,507 B2.
Hoesel, R. J. M. V., and Clark, G. M. (1995). "Evaluation of a portable two-microphone adaptive beamforming speech processor with cochlear implant patients," Journal of the Acoustical Society of America 97(4), 2498-2503.
Hu, Y., and Loizou, P. C. (2002). "A subspace approach for enhancing speech corrupted by colored noise," Signal Processing Letters 9(7), 204-206.
Hu, Y., and Loizou, P. C. (2009). "On the importance of preserving the harmonics and neighboring partials prior to vocoder processing: Implications for cochlear implants," Journal of the Acoustical Society of America 127(1), 427-434.
Jensen, L. B. (2006). "Hearing aid, a method of controlling a hearing aid, and a noise reduction system for a hearing aid," United States Patent, US 7,010,134 B2.
Kokkinakis, K., and Loizou, P. C. (2010). "Multi-microphone adaptive noise reduction strategies for coordinated stimulation in bilateral cochlear implant devices," Journal of the Acoustical Society of America 127(5), 3136-3144.
Kong, Y.-Y., Stickney, G. S., and Zeng, F.-G. (2005). "Speech and melody recognition in binaurally combined acoustic and electric hearing," Journal of the Acoustical Society of America 117(3), 1351-1361.
Loizou, P. C. (1999). "Signal-Processing Techniques for Cochlear Implants," IEEE Engineering in Medicine and Biology 18(3), 34-46.
Loizou, P. C., Lobo, A., and Hu, Y. (2005). "Subspace algorithms for noise reduction in cochlear implants," Journal of the Acoustical Society of America 118(5), 2791-2793.
Luntz, M., Shpak, T., and Weiss, H.(2005). "Binaural_/bimodal hearing: Concomitant use of a unilateral cochlear implant and a contralateral hearing aid," Acta Oto-Laryngologica 125, 863-869.
Luo, F.-L., Yang, J., Pavlovic, C., and Nehorai, A. (2002). "Adaptive null-forming scheme in digital hearing aids," Transactions on Signal Processing 50(7), 1583-1590.
Luo, X., and Fu , Q.-J. (2006). "Contribution of low-frequency acoustic information to Chinese speech recognition in cochlear implant simulations," Journal of the Acoustical Society of America 120(4), 2260-2266.
Nie, K., and Zeng, F.-G. (2005). "Encoding Frequency Modulation to Improve Cochlear Implant Performance in Noise," IEEE Transactions on Biomedical Engineering 52(1), 64-73.
Nissen, S. L., Harris, R. W., and Dukes, A., (2008). "Word recognition materials for native speakers of taiwan mandarin," American Journal of Audiology. 17(1), 68-79.
Parikh, G., and Loizou, P. C. (2005). "The influence of noise on vowel and consonant cues," Journal of the Acoustical Society of America 118(6), 3874-3888.
Rasmussen, K. B. (2007). "Microphone system with directional response," Oticon A/S, United States Patent, US 7,212,642 B2.
Shannon, R. V., Zeng, F.-G., Kamath, V., Wygonski, J., and Ekelid M. (1995). "Speech Recognition with Primarily Temporal Cues," SCIENCE 270(13), 303-304.
Spriet, A., Deun, L. V., Eftaxiadis, K., Laneau, J., Moonen, M., Dijk, B. V., Wieringen, A. V., and Wouters, J. (2007). "Speech understanding in background noise with the two-microphone adaptive beamformer BEAM™ in the Nucleus Freedom™ Cochlear Implant System," Ear & Hearing 28(1), 62-72.
Stickney, G. S., Zeng, F.-G., Litovsky, R., and Assmann, P. (2004). "Cochlear implant speech recognition with speech maskers," Journal of the Acoustical Society of America 116(2), 1081-1091.
Wang, W.-D., Liu, H.-Y., Hu, Y., and Qing, A. (2009). "A New Speech Coding Strategy for Cochlear Implant," Journal of Medical and Biological Engineering 30(5), 335-342.
Weiss, M. R. (1993). "Effects of noise and noise reduction processing on the operation of the Nucleus-22 cochlear implant processor," Journal of Rehabilitation Research and Development 30(1), 117-128.
Wouters, J., and Berghe, J. V. (2001). "Speech recognition in noise for cochlear implantees with a two-microphone monaural adaptive noise reduction system," Ear & Hearing 22(5), 420-430.
Yang, L.-P., and Fu, Q.-J. (2005). "Spectral subtraction-based speech enhancement for cochlear implant patients in background noise," Journal of the Acoustical Society of America 117(3), 1001-1004.
Zeng, F.-G. (2004). "Trends in cochlear implants," Trends Amplif 8, 1-34.
Zezhang, H. (2000). "Adaptive noise filter," GN Resound corporation, WO/2000/48168.
內政部統計處 (2011). “一百年第七週內政統計通報(99年底領有身心障礙手冊者人數統計),” Retrieved August 25, 2011, from http://sowf.moi.gov.tw/stat/week/list.htm
王小川 (2007). 語音訊號處理. 全華圖書股份有限公司, 台灣, 台北.
行政院衛生署(2011). “身心障礙等級,” Retrieved August 25, 2011, from http://dohlaw.doh.gov.tw/Chi/FLAW/FLAWDAT01.asp?lsid=FL013648
行政院環保署(2011). “類別區分噪音陳情數,” Retrieved August 25, 2011, from http://ivy1.epa.gov.tw/noise/AA/A-04.htm?ctype=B&cid=AA&oid=www
沈宗穎 (2011). “以軟體為基準的助聽器模擬平台之發展-模擬 Unitron、Widex和Oticon噪音消除策略,” 碩士論文, 國立中央大學電機工程研究所.
許詠傑 (2009). “以軟體為基準的助聽器模擬平台之發展-噪音消除,” 碩士論文, 國立中央大學電機工程研究所.
郭世傑 (2011). “以軟體為基準的助聽器模擬平台之發展-使用雙麥克風策略之固定及非固定背景噪音抑制,” 碩士論文, 國立中央大學電機工程研究所.
黃國原 (2009). “模擬人工電子耳頻道數、刺激速率與雙耳聽對噪音環境下中文語音辨識率之影響,” 碩士論文, 國立中央大學電機工程研究所
黃銘緯 (2005). “台灣地區噪音下漢語語音聽辨測試,” 碩士論文, 國立台北護理學院聽語障礙科學研究所.
董書豪 (2007). “人工電子耳進階結合編碼策略的中文語音辨識成效與模擬--結合助聽器之分析,” 碩士論文, 國立中央大學電機工程研究所.
輔仁大學語言研究所 (2011).“聽覺語言學,”Retrieved February 23, 2011, from
http://www.ling.fju.edu.tw/phonetic/hearing.htm