跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周安莉
Amrita Choudhury
論文名稱: 電化學法成長鋁摻雜氧化鋅奈米柱及其在染料敏化太陽能電池之應用
Array of Al-doped ZnO nanorods grown by electrochemical method and their application to dye-sensitized solar cells (DSSCs)
指導教授: 林景崎
Jing-Chie Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 應用材料科學國際研究生碩士學位學程
International Master Degree Program in Applied Materials Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 124
中文關鍵詞: Al doped ZnODye-sensitized solar cellElectrochemical deposition
外文關鍵詞: Al doped ZnO, Dye-sensitized solar cell, Electrochemical deposition
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋁摻雜之氧化鋅奈米柱經電化學法成功製作於披覆及未披覆氧化鋅晶種層之銦錫氧化物基板‧由形貌、晶體結構及成分等分析,不同的鋁摻雜氧化鋅奈米柱之純氧化鋅奈米柱做為染料敏化太陽能電池的之陽極並進行能量轉換效率的比較 。當鍍液中的硝酸鋁濃度由10 µM 增加到1000 µM,我們可控制電化學沉積之鋁鋅沉積物之鋁含量由0.75 at.% 上升至 20.95 at.%。在有預先披覆氧化鋅晶種層之玻璃電鍍,在硝酸鋁濃度小於100 µM之摻鋁氧化鋅電鍍,奈米柱表現出垂直且密集地成長於基板上方;當導電玻璃沒有披覆氧化鋅晶種層,所得到之結果為較差結晶性與散亂排列的氧化鋅奈米柱;當硝酸鋁濃度大於250 µM之摻鋁氧化鋅電鍍,沒有發現奈米柱之形貌,取而代之的是片狀與團狀的混合物。
    不同的鋁摻雜氧化鋅樣品被應用在染料敏化電池的光陽極。由電池的電壓-電流曲線可以證實摻鋁氧化鋅奈米柱較純氧化鋅奈米柱具有較高的奈米柱單位密度可有效提升電池之電流密度與能量轉換效率。具有晶種層成長的摻鋁氧化鋅奈米柱,其最高的能量轉換效率為0.82 %,最低為0.18 %;沒有披覆晶種層的摻鋁氧化鋅奈米柱奇能量轉化效率最高為0.067 %。


    Array of Al-doped zinc oxides (AZOs) nanorods was successfully grown by electrochemical method on the glass previously coated with indium-tin oxide (ITO) and treated with or without a seed layer of ZnO. After examination of the morphology, structure and composition, variant samples of AZO were used as the raw material of photo anodes of dye-sensitized solar cells (DSSCs) instead of pure ZnO for comparison the energy conversion efficiency of DSSCs. Resulting from this electrochemical process we deposited the arrays of AZO with their Al-dopant varying in the 0.75 to 20.95 at. % while aluminium nitrate was added from 10 to 1000 µM in the baths. In the presence of ZnO-seed layer, arrays of vertical AZO nanorods were formed densely on the substrate from the baths with Al3+ content less than 100 µM; whereas in the absence of of ZnO-seed layer, poor crystalline AZO nanorods were grown randomly. As the concentration of aluminium nitrate in the bath higher than 250 µM, no deposits in nanorod array could be found but a mixture of cloudy and flaky structures deposited instead. Different AZO samples varying in Al-dopant concentrations were utilized to prepare the photoanode of DSSCs. The plot of current density against voltage (J–V) for various DSSCs indicated that the performance of the DSSCs made up of high dense array of AZO nanrods significantly improve the current densities and energy conversion efficiency (η) than those made of pure ZnO nanorods. In the presence of previous ZnO-seed layer, the energy conversion efficiency (η) is higher (i.e., 0.8191 % > 0.18%) for the DSSC made of arrays of AZO nanorods as compared with that made of pure ZnO. In the absence of ZnO-seed layer, the efficiency for that from AZO is only at 0.067%.

    Abstract i Acknowledgements iv List of Tables x List of Figures xi Chapter 1. INTRODUCTION 1 1.1 Versatile nature of zinc oxides (ZnO) and Al-doped zinc oxides (AZO) 1 1.2 Use of ZnO and AZO as the photo electrochemical anode in the DSSCs 2 1.3 Motivation of this work 3 Chapter 2. THEORETICAL BACKGROUND 6 2.1 Fundamental of pure ZnO and AZOs 6 2.1.1 Crystal Structure 6 2.1.2 Electrical Properties 7 2.1.3 Optical Properties 8 2.2 Doped ZnO and AZOs 8 2.2.1 Methods for deposition of AZO nanorods 10 2.2.2 Alignment of AZOs deposited on different substrates 13 2.2.3 Electrochemical Deposition of ZnO and AZO 13 2.2.3.1 Mechanism involved in electrodeposition 14 2.3 Dye Sensitized Solar Cell (DSSCs) 16 2.3.1 Development of DSSCs 16 2.3.2 Mechanism of typical DSSCs 18 2.3.3 Evaluation of performance of DSSCs 20 2.3.3.1 Energy Conversion Efficiency (η) 21 2.3.3.2 Short Circuit Current Density, (Jsc) 21 2.3.3.3 Open Circuit Voltage, (Voc) 22 2.3.3.4 Fill Factor, (FF) 22 2.4 Studies on DSSCs based on AZO 23 Chapter 3. EXPERIMENTAL PROCEDURES 25 3.1 Experimental Flowchart 26 3.2 Fabrication of ZnO Seed layer 28 3.2.1 Materials used 28 3.2.2 Fabrication Method 28 3.3 Fabrication of pure ZnO nanorods: 29 3.3.1 Chemicals Used: 29 3.3.2 Al-doped ZnO Fabrication parameter: 30 3.4 Techniques Used for Characterization of sample 31 3.4.1 Grazing Incident X-ray Diffraction 31 3.4.2 Field-Emission Scanning Electron Microscope 32 3.4.3 X-ray Photoelectron Spectroscopy 32 3.5 DSSC assembling and Measurement 33 3.5.1 Materials Required 33 3.5.2 Preparation 33 3.6 Fabrication of DSSC 34 3.6.1 Assembling 34 3.6.2 Testing 34 Chapter4. RESULTS 35 4.1 Pure ZnO and AZO deposits on ITO glass without seed layer 35 4.1.1 SEM morphology 35 4.1.1.1 Pure ZnO deposits on bare ITO substrate 35 4.1.1.2 AZO deposits without seed layer on bare ITO substrate 35 4.2 Deposition of nanorods on previously coated ZnO seed layer on ITO 36 4.2.1 Surface Morphology by SEM 36 4.2.1.1 Pure ZnO nanorods surface morphology 36 4.2.1.2 Surface morphology of AZO nanorods deposited on ZnO seed layer coated on ITO 37 4.2.2 XRD Structural characterization 38 4.2.2.1 Pure ZnO diffraction pattern 38 4.2.2.2 AZO nanorods diffraction pattern 38 4.2.3 Elemental Composition by XPS 39 4.3 Carrier concentration analysis by Mott-Schottky 40 4.4 TEM analysis with EDS spectrum 42 4.5 Electrochemical deposition 42 4.6 Electrical characterization for DSSC 43 Chapter 5. DISCUSSION 45 5.1 AZO nanorods growth on ZnO seed layer and its effect 45 5.2 Effect of aluminium content on structure and other properties 46 5.2.1 The range of aluminium content that can be doped to ZnO 46 5.2.2 Intensity and peak position of (002) peak with respect to increase in aluminium concentration 48 5.2.3 Heavily doped AZO’s effect on (002) peak 48 5.2.4 Carrier Concentration of Undoped ZnO and Aluminium doped ZnO 49 5.2.5 Effect of Aluminium on crystallinity 50 5.3 Mechanism of Electrochemical Deposition 51 5.4 Electrochemical Deposition of Aluminium doped ZnO at -1.0V 55 5.5.1 AZO nanorods as photo anodes: 56 5.5.2 Size of photoanode influencing the efficiency 56 5.5.3 Efficiency with respect to diameter of AZO nanorod 57 5.5.4 Increase in fill factor and Voc and Isc 58 5.5.5 Improvement in efficiency due to seed layer 59 5.5.6 Comparison of our data with other DSSCs based on Al-doped ZnO nanostructures 60 6. CONCLUSION 61 References 63

    [1] P. Zu, Z. Tang, G.K. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Communications, 103 (1997) 459-463.
    [2] Z. Tang, G.K. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Applied Physics Letters, 72 (1998) 3270-3272.
    [3] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, science, 292 (2001) 1897-1899.
    [4] L. Vayssieres, K. Keis, A. Hagfeldt, S.-E. Lindquist, Chemistry of Materials, 13 (2001) 4395-4398.
    [5] H. Yu, Z. Zhang, M. Han, X. Hao, F. Zhu, Journal of the American Chemical Society, 127 (2005) 2378-2379.
    [6] L. Vayssieres, Advanced Materials, 15 (2003) 464-466.
    [7] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science, 291 (2001) 1947-1949.
    [8] W.-Z. Wang, B.-Q. Zeng, J. Yang, B. Poudel, J. Huang, M.J. Naughton, Z. Ren, Advanced Materials, 18 (2006) 3275-3278.
    [9] Y. Qiu, S. Yang, Advanced Functional Materials, 17 (2007) 1345-1352.
    [10] X. Fan, M.L. Zhang, I. Shafiq, W.J. Zhang, C.S. Lee, S.T. Lee, Advanced Materials, 21 (2009) 2393-2396.
    [11] Y. Gao, M. Nagai, T.-C. Chang, J.-J. Shyue, Crystal Growth and Design, 7 (2007) 2467-2471.
    [12] H. Chen, A. Du Pasquier, G. Saraf, J. Zhong, Y. Lu, Semiconductor Science and Technology, 23 (2008) 045004.
    [13] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science-AAAS-Weekly Paper Edition, 270 (1995) 1789-1790.
    [14] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nature materials, 4 (2005) 455-459.
    [15] J.B. Baxter, E.S. Aydil, Applied Physics Letters, 86 (2005) 053114.
    [16] B. Pradhan, S.K. Batabyal, A.J. Pal, Solar Energy Materials and Solar Cells, 91 (2007) 769-773.
    [17] K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, A. Hagfeldt, Solar Energy Materials and Solar Cells, 73 (2002) 51-58.
    [18] E. Hosono, S. Fujihara, I. Honma, H. Zhou, Advanced Materials, 17 (2005) 2091-2094.
    [19] Y. Hsu, Y. Xi, A. Djurišić, W. Chan, Applied Physics Letters, 92 (2008) 133507.
    [20] E. Kaidashev, M. Lorenz, H. Von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Applied Physics Letters, 82 (2003) 3901-3903.
    [21] A.I. Hochbaum, P. Yang, Chemical reviews, 110 (2009) 527-546.
    [22] S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J.-C. Tedenac, Journal of Alloys and Compounds, 462 (2008) 335-339.
    [23] R.R. Piticescu, R.M. Piticescu, C.J. Monty, Journal of the European Ceramic Society, 26 (2006) 2979-2983.
    [24] H. Bae, M. Yoon, J. Kim, S. Im, Applied physics letters, 83 (2003) 5313-5315.
    [25] S. Yun, J. Lee, J. Chung, S. Lim, Journal of Physics and Chemistry of Solids, 71 (2010) 1724-1731.
    [26] R. Zhu, C.-Y. Jiang, X.-Z. Liu, B. Liu, A. Kumar, S. Ramakrishna, Applied physics letters, 93 (2008) 013102.
    [27] W. Zhang, R. Zhu, X. Liu, B. Liu, S. Ramakrishna, Applied Physics Letters, 95 (2009) 43304.
    [28] S.-K. Kim, S.-Y. Jeong, C.-R. Cho, Applied Physics Letters, 82 (2003) 562.
    [29] C. Jagadish, S.J. Pearton, Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications, Elsevier, 2011.
    [30] Q. Li, Q. Wan, Y. Liang, T. Wang, Applied Physics Letters, 84 (2004) 4556-4558.
    [31] Z.-M. Liao, K.-J. Liu, J.-M. Zhang, J. Xu, D.-P. Yu, Physics Letters A, 367 (2007) 207-210.
    [32] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoc, Journal of applied physics, 98 (2005) 041301.
    [33] W.I. Park, J.S. Kim, G.-C. Yi, M. Bae, H.-J. Lee, Applied Physics Letters, 85 (2004) 5052-5054.
    [34] J. Hopfield, D. Thomas, Physical Review Letters, 15 (1965) 22.
    [35] A. Janotti, C.G. Van de Walle, Applied Physics Letters, 87 (2005) 122102.
    [36] H. Morkoç, Ü. Özgür, Zinc oxide: fundamentals, materials and device technology, John Wiley & Sons, 2008.
    [37] T. Minami, Semiconductor Science and Technology, 20 (2005) S35.
    [38] J.H. Noh, J.-S. An, J.Y. Kim, C.M. Cho, K.S. Hong, H.S. Jung, Journal of electroceramics, 23 (2009) 497-501.
    [39] E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, E. Aperathitis, Thin Solid Films, 516 (2008) 8141-8145.
    [40] K. Sakurai, R. Hunger, N. Tsuchimochi, T. Baba, K. Matsubara, P. Fons, A. Yamada, T. Kojima, T. Deguchi, H. Nakanishi, Thin Solid Films, 431 (2003) 6-10.
    [41] Z. Liu, F. Shan, Y. Li, B. Shin, Y. Yu, Journal of crystal growth, 259 (2003) 130-136.
    [42] S. Major, K. Chopra, Solar energy materials, 17 (1988) 319-327.
    [43] P.R. Kumar, C.S. Kartha, K. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh, D. Avasthi, Semiconductor science and technology, 20 (2005) 120.
    [44] K.C. Park, D.Y. Ma, K.H. Kim, Thin Solid Films, 305 (1997) 201-209.
    [45] N. Sakai, Y. Umeda, F. Mitsugi, T. Ikegami, Surface and Coatings Technology, 202 (2008) 5467-5470.
    [46] A. Singh, R. Mehra, A. Yoshida, A. Wakahara, Journal of applied physics, 95 (2004) 3640-3643.
    [47] J.-S. Na, G. Scarel, G.N. Parsons, The Journal of Physical Chemistry C, 114 (2009) 383-388.
    [48] H. Kim, C. Gilmore, J. Horwitz, A. Pique, H. Murata, G. Kushto, R. Schlaf, Z. Kafafi, D. Chrisey, Applied Physics Letters, 76 (2000) 259-261.
    [49] K. Ellmer, Journal of Physics D: Applied Physics, 34 (2001) 3097.
    [50] T. Minami, H. Nanto, S. Takata, Japanese Journal of Applied Physics, 23 (1984) L280.
    [51] X. Xue, L. Li, H. Yu, Y. Chen, Y. Wang, T. Wang, Applied physics letters, 89 (2006) 3118.
    [52] C.-L. Hsu, S.-J. Chang, H.-C. Hung, Y.-R. Lin, C.-J. Huang, Y.-K. Tseng, I.-C. Chen, Journal of The Electrochemical Society, 152 (2005) G378-G381.
    [53] H. Sato, T. Minami, S. Takata, T. Miyata, M. Ishii, Thin Solid Films, 236 (1993) 14-19.
    [54] B. Zhang, K. Wakatsuki, N. Binh, N. Usami, Y. Segawa, Thin Solid Films, 449 (2004) 12-19.
    [55] A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, M. Okuda, Japanese journal of applied physics, 35 (1996) L56.
    [56] S. Lin, H. Tang, Z. Ye, H. He, Y. Zeng, B. Zhao, L. Zhu, Materials Letters, 62 (2008) 603-606.
    [57] H. Kumarakuru, D. Cherns, G.M. Fuge, Surface and Coatings Technology, 205 (2011) 5083-5087.
    [58] Y. Kim, S. Kang, Materials Letters, 63 (2009) 1065-1067.
    [59] A.C. Aragonès, A. Palacios-Padrós, F. Caballero-Briones, F. Sanz, Electrochimica Acta, 109 (2013) 117-124.
    [60] S.-F. Wang, T.-Y. Tseng, Y.-R. Wang, C.-Y. Wang, H.-C. Lu, Ceramics International, 35 (2009) 1255-1260.
    [61] J. Song, S. Lim, The Journal of Physical Chemistry C, 111 (2007) 596-600.
    [62] J.A. Switzer, Journal of The Electrochemical Society, 133 (1986) 722-728.
    [63] L. Gal‐Or, I. Silberman, R. Chaim, Journal of the Electrochemical Society, 138 (1991) 1939-1942.
    [64] R. Chaim, I. Silberman, L. Gal‐Or, Journal of the Electrochemical Society, 138 (1991) 1942-1946.
    [65] M. Izaki, T. Omi, Applied Physics Letters, 68 (1996) 2439-2440.
    [66] S. Peulon, D. Lincot, Advanced Materials, 8 (1996) 166-170.
    [67] J. Lee, Y. Tak, Electrochemical and Solid-State Letters, 4 (2001) C63-C65.
    [68] Z. Gu, T. Fahidy, Journal of The Electrochemical Society, 146 (1999) 156-159.
    [69] M. Izaki, Journal of The Electrochemical Society, 146 (1999) 4517-4521.
    [70] J.-G. Wang, M.-L. Tian, N. Kumar, T.E. Mallouk, Nano letters, 5 (2005) 1247-1253.
    [71] B. Cao, F. Sun, W. Cai, Electrochemical and Solid-State Letters, 8 (2005) G237-G240.
    [72] M. Izaki, T. Shinagawa, K.-T. Mizuno, Y. Ida, M. Inaba, A. Tasaka, Journal of Physics D: Applied Physics, 40 (2007) 3326.
    [73] M. Izaki, T. Omi, Journal of the Electrochemical Society, 144 (1997) 1949-1952.
    [74] S. Otani, J. Katayama, H. Umemoto, M. Matsuoka, Journal of the Electrochemical Society, 153 (2006) C551-C556.
    [75] S. Peulon, D. Lincot, Journal of the Electrochemical Society, 145 (1998) 864-874.
    [76] M. Izaki, T. Omi, Journal of the Electrochemical Society, 143 (1996) L53-L55.
    [77] H. Luo, J. Zhang, Y. Yan, Chemistry of materials, 15 (2003) 3769-3773.
    [78] T. Pauporté, D. Lincot, Journal of the Electrochemical Society, 148 (2001) C310-C314.
    [79] R. Könenkamp, K. Boedecker, M.C. Lux-Steiner, M. Poschenrieder, F. Zenia, C. Levy-Clement, S. Wagner, Applied Physics Letters, 77 (2000) 2575-2577.
    [80] T. Pauporte, D. Lincot, Applied Physics Letters, 75 (1999) 3817-3819.
    [81] B. Cao, X. Teng, S.H. Heo, Y. Li, S.O. Cho, G. Li, W. Cai, The Journal of Physical Chemistry C, 111 (2007) 2470-2476.
    [82] Z. Chen, Y. Tang, L. Zhang, L. Luo, Electrochimica Acta, 51 (2006) 5870-5875.
    [83] F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q. Meng, J. Li, Q. Li, Materials Letters, 61 (2007) 2000-2003.
    [84] D. Pradhan, K.T. Leung, Langmuir, 24 (2008) 9707-9716.
    [85] B.N. Illy, A.C. Cruickshank, S. Schumann, R. Da Campo, T.S. Jones, S. Heutz, M.A. McLachlan, D.W. McComb, D.J. Riley, M.P. Ryan, Journal of Materials Chemistry, 21 (2011) 12949-12957.
    [86] K.P. Musselman, T. Gershon, L. Schmidt-Mende, J.L. MacManus-Driscoll, Electrochimica Acta, 56 (2011) 3758-3763.
    [87] A. Inamdar, S. Mujawar, S. Barman, P. Bhosale, P. Patil, Semiconductor Science and Technology, 23 (2008) 085013.
    [88] H. Tributsch, Photochemistry and Photobiology, 16 (1972) 261-269.
    [89] Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater, 21 (2009) 4087-4108.
    [90] D.M. Chapin, C. Fuller, G. Pearson, Journal of Applied Physics, (1954) 676-677.
    [91] B. O'regan, M. Grätzel, nature, 353 (1991) 737-740.
    [92] H. Tang, K. Prasad, R. Sanjines, P. Schmid, F. Levy, Journal of Applied Physics, 75 (1994) 2042-2047.
    [93] S. Ahmad, J.-H. Yum, Z. Xianxi, M. Grätzel, H.-J. Butt, M.K. Nazeeruddin, Journal of Materials Chemistry, 20 (2010) 1654-1658.
    [94] M.K. Nazeeruddin, E. Baranoff, M. Grätzel, Solar Energy, 85 (2011) 1172-1178.
    [95] F.d.r. Labat, T. Le Bahers, I. Ciofini, C. Adamo, Accounts of chemical research, 45 (2012) 1268-1277.
    [96] M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4 (2003) 145-153.
    [97] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, Journal of the American Chemical Society, 115 (1993) 6382-6390.
    [98] S. Ito, P. Chen, P. Comte, M. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, Photovolt: Res. Appl, 15 (2007) 603.
    [99] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Japanese Journal of Applied Physics, 45 (2006) L638.
    [100] K. Emery, D. Myers, Center, RERD, Ed, (2009).
    [101] R. Tao, T. Tomita, R.A. Wong, K. Waki, Journal of Power Sources, 214 (2012) 159-165.
    [102] S. Yun, S. Lim, Journal of Solid State Chemistry, 184 (2011) 273-279.
    [103] H. Benzarouk, A. Drici, M. Mekhnache, A. Amara, M. Guerioune, J.C. Bernède, H. Bendjffal, Superlattices and Microstructures, 52 (2012) 594-604.
    [104] R. Shukla, A. Srivastava, A. Srivastava, K. Dubey, Journal of Crystal Growth, 294 (2006) 427-431.
    [105] J. Mass, P. Bhattacharya, R. Katiyar, Materials Science and Engineering: B, 103 (2003) 9-15.
    [106] X. Zi-qiang, D. Hong, L. Yan, C. Hang, Materials Science in Semiconductor Processing, 9 (2006) 132-135.
    [107] J. Chen, J. Wang, R. Zhuo, D. Yan, J. Feng, F. Zhang, P. Yan, Applied Surface Science, 255 (2009) 3959-3964.
    [108] M. Chen, X. Wang, Y. Yu, Z. Pei, X. Bai, C. Sun, R. Huang, L. Wen, Applied Surface Science, 158 (2000) 134-140.
    [109] S. Yun, J. Lee, J. Yang, S. Lim, Physica B: Condensed Matter, 405 (2010) 413-419.
    [110] A.A. Al-Ghamdi, O.A. Al-Hartomy, M. El Okr, A. Nawar, S. El-Gazzar, F. El-Tantawy, F. Yakuphanoglu, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131 (2014) 512-517.
    [111] T. Yoshida, D. Komatsu, N. Shimokawa, H. Minoura, Thin solid films, 451 (2004) 166-169.
    [112] T. Pauporté, D. Lincot, Electrochimica Acta, 45 (2000) 3345-3353.
    [113] J. Conley Jr, L. Stecker, Y. Ono, Nanotechnology, 16 (2005) 292.
    [114] B. Choi, H. Im, J. Song, K. Yoon, Thin solid films, 193 (1990) 712-720.
    [115] T. Minami, H. Sato, H. Nanto, S. Takata, Japanese journal of applied physics, 25 (1986) L776.
    [116] J. Nishino, S. Ohshio, K. Kamata, Journal of the American Ceramic Society, 75 (1992) 3469-3472.
    [117] J.-H. Lee, B.-O. Park, Materials Science and Engineering: B, 106 (2004) 242-245.
    [118] L. Li, H. Deng, L. Dai, J. Chen, Q. Yuan, Y. Li, Materials research bulletin, 43 (2008) 1456-1462.
    [119] M.-C. Jun, S.-U. Park, J.-H. Koh, Nanoscale research letters, 7 (2012) 1-6.
    [120] P.d.S. Erica, C. Michel, J.d.S. Gilvan, B.d.A. Larissa, L. Paulo Noronha Filho, D. Steven Frederick, B. José Roberto Ribeiro, Materials Sciences and Applications, 2013 (2013).
    [121] J. Lu, Z. Ye, Y. Zeng, L. Zhu, L. Wang, J. Yuan, B. Zhao, Q. Liang, Journal of Applied Physics, 100 (2006) 073714.
    [122] M. Zhu, G. Pan, The Journal of Physical Chemistry A, 109 (2005) 7648-7652.
    [123] M.G. de Chialvo, R. Salvarezza, D.V. Moll, A. Arvia, Electrochimica Acta, 30 (1985) 1501-1511.
    [124] N. Ye, J. Qi, Z. Qi, X. Zhang, Y. Yang, J. Liu, Y. Zhang, Journal of Power Sources, 195 (2010) 5806-5809.
    [125] J.S. Im, J. Yun, S.K. Lee, Y.-S. Lee, Journal of Alloys and Compounds, 513 (2012) 573-579.

    QR CODE
    :::