| 研究生: |
曾子豪 Zi-hao Zeng |
|---|---|
| 論文名稱: |
釔摻雜在SrCeO3之電導率及化學穩定性影響 Electrical Conductivity and Chemical Stability of Yttrium Doped SrCeO3 |
| 指導教授: |
李 雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 鈣鈦礦 、氫傳輸膜 、化學穩定性 、電導率 |
| 外文關鍵詞: | HTM, Perovskite, Conductivity, Chemical Stability |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鍶鈰氧化物有利於當作固態氧化物氫傳輸膜(SOHTM)之材料,導因於其擁有高的電子及質子電導率。固態氧化物氫傳輸膜用來萃取天然氣或石化燃料中的氫氣,有幾點條件須滿足方能維持運作:對於氫氣需有高選擇性,具備足夠機械強度以抵抗膜兩端的壓力差,在高水氣、二氧化碳及硫化物分壓下須有良好的化學穩定性。本實驗所使用摻雜釔之鍶鈰氧化物(SrCe1-xYxO3-δ, x=0, 0.05, 0.1)是以檸檬酸-EDTA方法製備,材料之微結構以X光繞射儀(XRD)、場發掃描式電子顯微鏡(FE-SEM)及穿透式電子顯微鏡(TEM)來做觀察。材料之電導率使用兩點式電阻量測,化學穩定性則在CO2氣氛下處理後觀察實驗結果。由1000°C瑕燒所得之粉體經XRD鑑定顯示為不含其他相之純相。在導電率方面,鍶鈰氧化物電導率隨著釔摻雜含量增加而提升。此外在低於700°C下,質子傳導主導大部分的傳導。而在高於700°C溫度時,電子傳導為總電導率之主要貢獻。在CO2化學穩定性實驗中,穩定性隨釔摻雜含量增加而下降。
Strontium-cerium oxides are beneficial for solid oxide hydrogen transport membranes (SOHTMs) because of their relatively high electrical and protonic conductivities. SOHTMs for the purpose of extraction of hydrogen from supplied gas mixtures are required to be: high selectivity for hydrogen but not others; mechanically strong enough to resist differential pressures across them; chemically stable under high partial pressure of moisture, carbon dioxide and sulfides; In this study, yttrium substituted strontium cerate (SrCe1-xYxO3-δ, x=0, 0.05, 0.1) was prepared by Citrate-EDTA complexing method. The microstructures were identified using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). Electrical conductivity was measured by two-point probe and chemical stability was examined under CO2 atmosphere. Preliminary results from XRD showed no detectable impurity phases when powders were calcined at 1000℃. The electrical conductivity increased as concentration of doped Y increased. However, At lower temperature (<700°C), the protonic conductivity dominated the total conductivity. At high temperature (>700°C), the electronic conductivity dominated the total conductivity. The chemical stability under CO2 was significantly to lose as more Y was doped into strontium cerates.
[1] X. Qi, Y.S. Lin, "Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes", Solid State Ionics, Vol. 130, (2000), 149-156.
[2] A.D. J. Larminie, "Fuel cell systems explained", Vol. (2003).
[3] W.R. Grove, "On the Gas Voltaic Battery. Voltaic Action of Phosphorus, Sulphur and Hydrocarbons", Philosophical Transactions of the Royal Society of London, Vol. 135, (1845), 351-361.
[4] X.D. Zhou, S.C. Singhal, "Fuel cells – solid oxide fuel cells | Overview", Encyclopedia of Electrochemical Power Sources, Vol. (2009), 1-16.
[5] S.C. Singhal, "Zirconia electrolyte-based solid oxide fuel cells", Encyclopedia of Materials: Science and Technology (Second Edition), Vol. (2001), 9898-9902.
[6] E. Ivers-Tiffée, "Electrolytes | solid: oxygen ions", Encyclopedia of Electrochemical Power Sources, Vol. (2009), 181-187.
[7] N.M. Sammes, B.R. Roy, "Fuel cells – solid oxide fuel cells | Cathodes", Encyclopedia of Electrochemical Power Sources, Vol. (2009), 25-33.
[8] K.V. Galloway, N.M. Sammes, "Fuel cells – solid oxide fuel cells | Anodes", Encyclopedia of Electrochemical Power Sources, Vol. (2009), 17-24.
[9] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, "Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production", Solid State Ionics, Vol. 3–4, (1981), 359-363.
[10] H. Uchida, H. Yoshikawa, H. Iwahara, "Formation of protons in SrCeO3-based proton conducting oxides. part I. gas evolution and absorption in doped SrCeO3 at high temperature", Solid State Ionics, Vol. 34, (1989), 103-110.
[11] T. Hibino, K. Mizutani, T. Yajima, H. Iwahara, "Evaluation of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by temperature programmed desorption method", Solid State Ionics, Vol. 57, (1992), 303-306.
[12] T. Yajima, H. Suzuki, T. Yogo, H. Iwahara, "Protonic conduction in SrZrO3-based oxides", Solid State Ionics, Vol. 51, (1992), 101-107.
[13] M. Cai, S. Liu, K. Efimov, J. Caro, A. Feldhoff, H. Wang, "Preparation and hydrogen permeation of BaCe0.95Nd0.05O3−δ membranes", Journal of Membrane Science, Vol. 343, (2009), 90-96.
[14] R.J. Phillips, N. Bonanos, F.W. Poulsen, E.O. Ahlgren, "Structural and electrical characterisation of SrCe1−xYxOξ", Solid State Ionics, Vol. 125, (1999), 389-395.
[15] S.D. Flint, R.C.T. Slade, "Variations in ionic conductivity of calcium-doped barium cerate ceramic electrolytes in different atmospheres", Solid State Ionics, Vol. 97, (1997), 457-464.
[16] 黃鎮江, "燃料電池", 滄海書局, Vol. 3, (2008).
[17] R.J. Gorte, J.M. Vohs, "Nanostructured anodes for solid oxide fuel cells", Current Opinion in Colloid & Interface Science, Vol. 14, (2009), 236-244.
[18] W.Z. Zhu, S.C. Deevi, "A review on the status of anode materials for solid oxide fuel cells", Materials Science and Engineering: A, Vol. 362, (2003), 228-239.
[19] J.W. Phair, S.P.S. Badwal, "Review of proton conductors for hydrogen separation", Ionics, Vol. 12, (2006), 103-115.
[20] C.W. Tanner, A.V. Virkar, "Instability of BaCeO3 in H2O-Containing atmospheres", J. Electrochem. Soc., Vol. 143, (1996), 1386-1389.
[21] Y. Li, R. Gemmen, X. Liu, "Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes", J. Power Sources, Vol. 195, (2010), 3345-3358.
[22] W. Zhou, R. Ran, Z. Shao, "Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review", J. Power Sources, Vol. 192, (2009), 231-246.
[23] X. Wei, Y.S. Lin, "Protonic and electronic conductivities of terbium doped strontium cerates", Solid State Ionics, Vol. 178, (2008), 1804-1810.
[24] A. Franco, T. Pereira Alves, E. de Oliveira Lima, E. da Silva Nunes, V. Zapf, "Enhanced magnetization of nanoparticles of MgxFe(3-x)O4 (0.5≤ x ≤1.5) synthesized by combustion reaction", Applied Physics A: Materials Science & Processing, Vol. 94, (2009), 131-137.
[25] M.M. Elbaccouch, S. Shukla, N. Mohajeri, S. Seal, T.R. A, "Microstructural analysis of doped-strontium cerate thin film membranes fabricated via polymer precursor technique", Solid State Ionics, Vol. 178, (2007), 19-28.
[26] G. Etchegoyen, T. Chartier, A. Julian, P. Del-Gallo, "Microstructure and oxygen permeability of a La0.6Sr0.4Fe0.9Ga0.1O3−δ membrane containing magnesia as dispersed second phase particles", Journal of Membrane Science, Vol. 268, (2006), 86-95.
[27] A.N. Shirsat, K.N.G. Kaimal, S.R. Bharadwaj, D. Das, "Thermodynamic stability of SrCeO3", J. Solid State Chem., Vol. 177, (2004), 2007-2013.
[28] W.-C. Lee, C.-Y. Huang, L.-K. Tsao, Y.-C. Wu, "Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics", J. Eur. Ceram. Soc., Vol. 29, (2009), 1443-1448.
[29] N. Sammes, R. Phillips, A. Smirnova, "Proton conductivity in stoichiometric and sub-stoichiometric yittrium doped SrCeO3 ceramic electrolytes", J. Power Sources, Vol. 134, (2004), 153-159.
[30] J. Liang, L.L. Mao, L. Li, W.H. Yuan, "Protonic and Electronic Conductivities and Hydrogen Permeation of SrCe0.95-xZrxTm0.05O3-δ", Chin. J. Chem. Eng., Vol. 18, (2010), 506-510.
[31] I. Kosacki, H.L. Tuller, "Mixed conductivity in SrCe0.95Yb0.05O3 protonic conductors", Solid State Ionics, Vol. 80, (1995), 223-229.
[32] Wikipedia. Goldschmidt Tolerance Factor. Available: http://en.wikipedia.org/wiki/Goldschmidt_Tolerance_Factor