跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥勳
CHEN,YAN-XUN
論文名稱: 使用具8K解析度樹脂3D列印機製作符合JIS精度規範之正齒輪
Study on the Fabrication of JIS Spur Gears by Using a Resin 3D Printer With 8K-Resolution
指導教授: 廖昭仰
Chao-Yaug Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系在職專班
Executive Master of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 74
中文關鍵詞: 齒輪光固化成型技術液晶顯示光固化成型技術田口法
外文關鍵詞: Spur Gear, Stereolithography, LCD-Based Stereolithography, Taguchi Method
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 塑膠正齒輪(Plastic Spur Gear)因具備優異的機械性能、耐磨耗性、減振能力與耐化學性,廣泛應用於機械運作流程及各類輕量化機械設備中。作為機械傳動系統中的關鍵元件,塑膠齒輪需具備高度精度,以確保傳動效率與穩定性。傳統上,塑膠齒輪多以射出成形製程製造,當產品需具特殊規格時,模具開發所帶來的高成本與製程限制,常使製造流程變得困難。
    光固化技術(Stereolithography Apparatus, SLA)是一種利用光聚合反應選擇性固化光敏樹脂,逐層堆疊以製作三維模型的成型方式。隨著技術演進,光固化技術已由早期成本高昂的系統,發展至較為經濟實用的液晶顯示光固化成型技術。本研究採用具備8K解析度之液晶顯示光固化成型設備,進行工程塑膠正齒輪之製作,旨在探討此成型技術是否具備滿足製造業實際應用需求之可行性。
    本研究以市售MISUMI齒輪(型號:GEABP2.0-15-20-A-12)作為參考基準,透過三次元量測儀進行齒輪幾何精度評估,並依據日本工業規格(JIS B 1702-1與B 1702-2)進行精度等級判定,以驗證本研究之量測流程之準確性,旨在探索使用8K解析度光固化技術製造工程塑膠正齒輪在JIS精度規範上的實際表現與潛在挑戰。其次,透過田口方法設計實驗並分析不同SLA列印參數對節距誤差、齒形誤差與齒線誤差之影響,嘗試尋求優化列印條件,並評估其在提升齒輪精度方面的有效性。
    實驗結果顯示,在田口方法望小特性分析下,各項精度指標的數據呈現顯著的波動,未能確立一致且穩定的製程模型以達成JIS精度目標,由於實驗數據的高度不穩定性,列印出的正齒輪的精度等級普遍落於 JIS N10 至 JIS N12 等級範圍內。田口方法分析表明,儘管嘗試了不同參數組合,光固化列印所製得的正齒輪在精度表現上未呈現穩定趨勢,且與市售參考齒輪(JIS N9等級) 之間存在顯著差距。這說明在當前實驗條件與規劃下,光固化技術在製造高精度齒輪方面仍存在顯著限制。


    Plastic spur gears possess excellent mechanical properties, wear resistance, vibration damping, and chemical resistance, making them widely adopted in various mechanical operations and lightweight equipment. As vital components in mechanical transmission systems, high precision in plastic gears is crucial for ensuring efficient and stable power transfer. Traditionally, plastic gears are produced via injection molding. However, manufacturing parts with unique specifications often entails high mold development costs and significant process limitations, making production challenging.
    Stereolithography Apparatus (SLA) is an additive manufacturing method that builds three-dimensional models layer by layer through the selective solidification of photosensitive resin via photopolymerization. With technological advancements, SLA has evolved from its early, high-cost systems to more economical and practical LCD-based SLA technology. This study utilized an 8K resolution LCD-based SLA system for producing engineering plastic spur gears, aiming to investigate the feasibility of this additive manufacturing technology in meeting the precision demands of industrial applications.
    This research used a commercially available MISUMI gear (model: GEABP2.0-15-20-A-12) as a reference. Gear geometric precision was evaluated using a coordinate measuring machine (CMM), and precision grades were determined according to Japanese Industrial Standards (JIS B 1702-1 and B 1702-2) to validate the accuracy of our measurement procedure. The primary goal was to explore the actual performance and inherent challenges of manufacturing engineering plastic spur gears using 8K resolution SLA technology within the context of JIS precision standards. Furthermore, the Taguchi method was employed for experimental design to analyze the influence of various SLA printing parameters (such as exposure time, lift speed, layer thickness, and printing angle) on pitch error, tooth profile error, and total lead error, attempting to identify optimized printing conditions and evaluate their effectiveness in improving gear precision.
    The experimental results show that under the "smaller-the-better" characteristic analysis of the Taguchi method, the data for various precision indicators exhibited significant fluctuations, failing to establish a consistent and stable process model to achieve the JIS precision targets. Due to the high instability of the experimental data, the precision grades of the printed spur gears generally fell within the JIS N10 to JIS N12 range. The Taguchi method analysis indicates that despite attempts with different parameter combinations, the spur gears produced by SLA printing did not show a stable trend in precision performance and there was a significant gap compared to the commercially available reference gear (JIS N9 grade). This suggests that under the current experimental conditions and planning, SLA technology still has significant limitations in manufacturing high-precision gears.

    摘要 i ABSTRACT ii 誌謝 iv 目錄 v 圖目錄 vi 表目錄 viii 第一章、 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 5 1-4 論文架構 5 第二章、 理論說明 6 2-1 光固化製造技術簡介 6 2-2 田口方法介紹 9 2-3 JIS正齒輪精度標準 14 第三章、 研究方法 18 3-1 光固化製造正齒輪之流程介紹 18 3-2 光固化製造正齒輪所使用材料與儀器 18 3-3 以田口法尋求最佳光固化參數 21 3-4 JIS正齒輪精度量測方法 24 第四章、 實驗結果與討論 32 4-1 商用正齒輪量測結果 34 4-2 光固化製造正齒輪之量測結果 35 4-3 田口方法結果與參數影響探討 47 第五章、 結論與未來展望 62 5-1 結論 62 5-2 未來展望 63 參考文獻 64

    [1] Kruth, J. P., Leu, M. C., & Nakagawa, T. (1998). Nakagawa, "Progress in additive manufacturing and rapid prototyping." CIRP Annals, 47(2), 525–540.
    [2] ISO/ASTM International(2015). Additive Manufacturing General Principles Terminology.
    ISO/ASTM 52900:2015. ISO.
    [3] 鄭正元,江卓培,林宗翰,林榮信,蔡明忠,賴維祥,鄭逸琳,鄭中緯,蘇威年,陳怡文,賴信吉,許郁淞,陳宇恩,宋震國,李芝蓁,許啓彬,張雅竹,陳昭舜,陳俊名,葉雲鵬,劉紹麒,錢啓文,謝子榆,謝志華,蘇柏彰,汪家昌,劉書丞,趙育德(2023),3D列印入門與應用,第一版,全華圖書股份有限公司。
    [4] Gebhardt, A. (2012),Understanding Additive Manufacturing:Rapid Prototyping - Rapid Tooling - Rapid Manufacturing,Hanser Publishers.
    [5] Unkovskiy, A., Spintzyk, S., Scholz, M., & Wostmann, B. (2018). "Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin." Dental materials , 34(12), 191–199.
    [6] Zhang, Z. C., Li, P. L., Zhang, X. Y., & Xu, L. J. (2019). "Influence of the three-dimensional printing technique and printing layer thickness on model accuracy." Journal of Orofacial Orthopedics , 80(4), 194–204.
    [7] Arnold, C., Sigg, J., & Hey, J. (2019). "Surface quality of 3D-printed models as a function of various printing parameters." Materials 12(12), 2034.
    [8] Pan, Y., Zhou, C., & Chen, Y. (2017). "Study of separation force in constrained surface projection stereolithography." Rapid Prototyping Journal ,23(2), 353–361.
    [9] Wu, J., Guo, J., Linghu, C., Li, H., Zhang, X., & Sun, J. (2021). "Rapid digital light 3D printing enabled by a soft and deformable hydr ogel separation interface." Nature Communications, 12, 6070.
    [10] Kodama, H. (1981). "Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. " Review of Scientific Instruments, 52(11), 1770–1773.
    [11] Hull, C. W. (1986). "Apparatus for production of three-dimensional objects by stereolithography . "U.S. Patent No. 4,575,330. U.S. Patent and Trademark Office.
    [12] 蔡佳宏(2011),五軸CNC成形砂輪磨齒機線上掃描式量測NC路徑規劃與齒輪精度評估之研究,台灣科技大學碩士論文。
    [13] 紀宜成(2012),齒輪三次元量測儀探頭校正與量測方法研究,國立中正大學碩士論文。
    [14] Chekkaramkodi, D., Jacob, L., Shebeeb, M. C., Umer, R., & Butt, H. (2024). "Review of vat photopolymerization 3D printing of photonic devices." Additive Manufacturing, 86(4), 104189.
    [15] 李輝煌(2011),田口方法品質設計的原理與實務,第四版,高立圖書有限公司。
    [16] 蘇朝墩(1999),產品穩健設計:田口品質工程方法的介紹和應用,第二版,中華民國品質協會。
    [17] 鄭燕琴(1995),田口品質工程技術理論與實務,第二版,中華民國品質協會。
    [18] 張秀娠(1993),田口式品質工程導論,第四版,中華民國品質協會。
    [19] 日本規格協会(2016)。JIS B 1702-1:2016 円筒歯車―精度等級―第1部:歯車の歯面に関する誤差の定義及び許容値,東京:日本規格協会。
    [20] 日本規格協会(2022)。JIS B 1702-2:2022 円筒歯車―精度等級―第2部:両歯面かみ合い偏差の定義及び許容値,東京:日本規格協会。

    QR CODE
    :::