| 研究生: |
陳岡宏 Kang-Hung Chen |
|---|---|
| 論文名稱: |
蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究 The study of montmorillonite/epoxy, montmorillonite/polyaniline and polyaniline tubes in nano-materials |
| 指導教授: |
楊思明
Sze-Ming Yang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 190 |
| 中文關鍵詞: | 氧化鋁膜 、黏土 、蒙脫土 、聚苯胺 、奈米複合材料 |
| 外文關鍵詞: | anodic alumina membranes, TEM, ESR, polyaniline, nanocomposites, diferential scanning calorimetry (DSC), clay, thermogravimetric analysis (TGA) |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究內容分為兩個方向,一方面將黏土分散至環氧樹脂中形成奈米複合材料,另一方面以黏土或氧化鋁膜為模板合成聚苯胺導電性高分子。
第一部份主要以有機胺類嵌入蒙脫土層間而改質蒙脫土以利黏土層之分散,並合成蒙脫土/環氧樹脂奈米複合材料。由實驗結果可以觀察到蒙脫土層間距的大小受到嵌入有機胺分子鏈長度和電荷密度影響,有機胺分子鏈越長、電荷密度越小會得到大的層間距。在以CH3(CH2)17NH3+改質蒙脫土和環氧樹脂聚合成的複合材料中可以看出,複合材料中的蒙脫土層間距可擴大到~50 Å, Tg可以從108.4℃提昇到117.4℃,此外,對於阻水性也有相當的提昇。也以各式團聯共聚物嵌入蒙脫土層間,探討不同電荷密度、不同電性、不同鏈長和不同結構,對於蒙脫土層間距的影響,結果顯示決定層間距的首要因子為層間靜電作用力。而蒙脫土能在環氧樹脂基材中分散,這要歸因於共聚物將黏土表面疏水化,使層間容納更多環氧樹脂並擴大層間距,TEM影像可以看到層間距>200 Å,顯示黏土層分散在基材中。測試其性質時也發現添加少量修飾過的蒙脫土於環氧樹脂基材中可提昇Tg,而其阻水性較未修飾蒙脫土的複合材料佳,也有較佳之透光度。
論文中第二部份以有機胺改質蒙脫土使蒙脫土提高吸附苯胺單體的含量,而在層間合成的聚苯胺量增多。本研究以含有羧基(-COOH)的HOOC(CH2)11NH3+幫助蒙脫土吸附最多苯胺單體,因而合成最多的聚苯胺於層間,ESR的結果說明層間聚苯胺的訊號確有比較狹窄的線寬,顯示聚苯胺/蒙脫土複合材料中聚苯胺的自由基陽離子非定域化的程度提高。另外,也研究以蒙脫土修飾電極,並以電化學法聚合苯胺,以獲得更高的反應電流。先將鉑原子嵌入黏土層間再合成聚苯胺,循環伏安圖譜顯示可將反應電流提高了315%,可相當的提昇電極的靈敏度,使得導電性高分子在感測器上的應用,具有更佳的靈敏度。
最後以商業化氧化鋁濾膜為模板,以化學方法和電化學方法合成聚苯胺管,SEM的影像顯示電化學方式和化學方式皆成功合成出聚苯胺管。
Two main topics are studied in this thesis, one topic is dispersion of the clay layers in epoxy matrix to form nanocomposites, another topic is using clay or anodic aluminum oxide membrane as templates to synthesize conducting polyaniline.
In the first part, onium ions are intercalated into the clay layers in order to modify the clay layers for dispersion in polymer matrix. Montmorillonite/epoxy nanocomposites are formed. The d-spacing between the clay layers was affect by chain length and charge density of the onium ions. The longer chain length and lower charge density onium ions modified clay show larger d-spacing. An epoxy/montmorillonite nanocomposite is synthesized by heating a mixture of [H3N(CH2)17CH3]+modified montmorillonite with epoxy monomer and curing agent. TEM photographs show that the spacing between the clay layers was further enlarged to about 50 Å. Glass transition temperature (Tg) of the nanocomposite containing 5 phr of [H3N(CH2)17CH3]+modified montmorillonite change from 108.4℃ of epoxy resin to 117.4℃. The nanocomposite possesses higher water resistance than the epoxy and unmodified montmorillonite composite. Nanocomposite also shows higher light transmittance. The improvements of the above properties can be evidenced for the formation of nano-scale composite. Acrylic block copolymers are also intercalated into the layers of montmorillonite in order to study the effects of charge density, chin length and structure. The results indicate that primary factor to affect the d-spacing of clay is electrostatic intercalation. Nanocomposites of epoxy and clay modified with block copolymers were synthesized. When modified clay contents are below 2 phr, Tg higher than 131.7 oC can be obtained. Water resistance and light transmittance of the nanocomposite is also improved.
In the second parts, nanocomposites of polyaniline/montmorillonite were synthesized with onium ion modified montmorillonite. More aniline was absorbed between the clay layers of modified montmorillonite. After polymerization of aniline, TEM photographs of the composites show distances of 60-140 Å between the clay layers. TG results show more polyaniline are formed between the modified clay layers, especially for HOOC(CH2)11NH3+ modified clay. ESR results show narrow linewidth of polyaniline intercalated between the clay layers. We also synthesize polyaniline electrochemically in platinum containing montmorillonite to enhance the response current of the electrode. The cyclic voltammogram (CV) shows that improvement of the response current by 315 % was observed for polyaniline in Pt containing montmorillonite.
Synthesis of polyaniline tubes in anodic aluminum oxide membranes by chemical and electrochemical methods were also studied. SEM images show that uniform polyaniline tubes with diameter about 200 nm were synthesized successfully.
1. Barthlott, W.; Neinhuis, C. Planta 1997, 202, 1.
2. Neinhuis, C; Barthlott, W. New Phytologist 1998, 138, 91.
3. Romeas, V.; Pichat, P.; Guillard, C.; Chopin, T.; Lehaut, C. New J Chem 1999, 23, 365.
4. Romeas, V.; Pichat, P.; Guillard, C.; Chopin, T.; Lehaut, C. Ind Eng Chem Res 1999, 38, 3878.
5. Kim, J. M.; Chio, W. B.; Lee, N. S.; Jung, J. E. Diamond Relat. Mater 2000, 9, 1184.
6. Dabrowski, F.; Lebras, M.; Cartier, L.; Bourbigot, S. J Fire Sci 2001, 19, 219.
7. Nano Composite Laboratory ,Chemical Engineering Department, NTHU, Taiwan.
8. Josefowicz, J. Y.; Avlyanov, J. K.; Macdiarmid, A. G. Thin Solid Films 2001, 393, 186.
9. Yuan, W. L.; Orear, E. A.; Cho, G.; Funkhouser, G. P.; Glatzhofer, D. T. Thin Solid Films 2001, 385, 96.
10. Goward, G. R.; Leroux, F.; Nazar, L. F. Electrochim Acta 1998, 43, 1307.
11. Chao, K. J.; Wu, C. N.; Chang, H,; Lee, L. J.; Hu, S. F. J Phys Chem B 1997, 101, 6341.
12. Lewis, L. H.; Gallagher, K.; Hoerman, B.; Panchanathan, V. J Alloys Compd 1998, 270, 265.
1. Usuki, A.; Kawasumi, M.; Kojima, Y.; Fujushima, A.; Okada, A.; Kamigaito, O. J Mater Res 1993, 8, 1174.
2. Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fujushima, A.; Kurauchi, T.; Kamigaito, O. J Mater Res 1993, 8, 1179.
3. Porter, T. L.; Hagerman, M. E.; Reynolds, B. P.; Eastman, M. P.; Parnell, R. A. J Polym Sci B, Polym Phys 1998, 36, 673.
4. Kato, C.; Kuroda, K.; Takahara, H. Clays Clay Miner 1981, 29, 294.
5. Lan, T.; Kaviratna, D.; Pinnavaia, T. J. J phys Chem Solids 1996, 57, 1005.
6. Pinnavaia, T. J.; Lan, T.; Kaviratna, P. D. ACS Symposium Series 662; American Chemical Society: Washington, DC, 1996; P 250.
7 . Burnside, S. D.; Wang, H. C.; Giannelis, E. P. Chem Mater 1999, 11, 1055.
8. Wang, Z.; Pinnavaia, T. J. Chem Mater 1998, 10, 3769.
9. Kojima, Y.; Fukumori, K.; Usuki, A.; Okada, A.; Kurauchi, T. J Mater Sci Lett 1993, 12, 889.
10. Akelah, A. El-Deen, N. S.; Hiltner, A.; Baer, E.; Moet, A. Mater Lett 1995, 22, 97.
11. Ogata, N.; Kawakage, S.; Ogihara, T. Polymer 1997, 38, 5115.
12. Ogata, N.; Jimenez, G.; Ogihara, T. J Poly Sci B, Poly Phys 1997, 35, 389.
13. Jimenez, G.; Ogata, N.; Kawai, H.; Ogihara, T. J App Polym Sci 1997, 64, 2211.
14. Vaia, R.; Jandt, K.; Kramer, E.; Giannelis, E. Chem Mater 1996, 8, 2628.
15. Vaia, R.; Jandt, K.; Kramer, E.; Giannelis, E. Macromolecules 1995, 28, 8080.
16. Faguy, P. W.; Ma, W. L.; Lowe, J. A.; Pan, W. P.; Brown, T. J Mater Chem 1994, 4, 771.
17. Okada, A.; Kamigaito, O.; Kawasumi, M.; Kurauchi, T. Abstr Pap Am Chem Soc 1987, 194, 10.
18. Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Kurauchi, T. Abstr Pap Am Chem Soc 1990, 200, 218.
19. Moet, A. S.; Akelah, A. Mater Lett 1993, 18, 797.
20. Wang, M. S.; Pinnavaia, T. J. Chem Mater 1994, 6, 468.
21. Lan, T.; Pinnavaia, T. J. Chem Mater 1994, 6, 2216.
22. Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. Chem Mater 1995, 7, 2144.
23. Wu, J. H.; Lerner, M. M. Chem Mater 1993, 5, 835.
24. Lemmon, J. P.; Lerner, M. M. Solid State Commun 1995, 94, 533.
25. Lemmon, J. P.; Wu, J. H.; Oriakhe, C.; Lerner, M. M. Electrochim Acta 1995, 40, 2245.
26. Yano, K.; Usuki, A.; Okada, A. J Polym Sci Part A Polym Chem 1997, 35, 2289.
27. Messersmith, P. B.; Giannelis, E. P. Chem Mater 1993, 5, 1064.
28. Wang, Z.; Lan, T.; Pinnavaia, T. J. Chem Mater 1996, 8, 2200.
29. Wang, Z.; Pinnavaia, T. J. Chem Mater 1998, 10, 1820.
30. Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P. Chem Mater 1994, 6, 1017.
31. Chen, X. B.; Wu, X. S. Polymer 1992, 33, 3639.
32. Lee, D. C.; Jang, L. W. J Appl polym Sci 1998, 68, 1997.
33. Lee, A.; Lichtenhan, J. D. J Appl Polym Sci 1999, 73, 1993.
34. Grim, R. E.; Clay Mineralogy, McGraw-Hill, New York, 1968.
35. Lagaly, G. Solid State Ionics 1986, 22, 43.
36. Lagaly, G. Clays Clay Miner, 1982, 30, 215.
37. Kakurai, T.; Noguchi, T. J Soc Org Chem Japan, 1960, 18, 485.
38. Shechter, L.; Wynstra, J.; Kurkjy, R. P. I & E C, 1956, 48, 94.
39. Shi, H. Z.; Lan, T.; Pinnavaia, T. J. Chem Mater 1996,
1. Southward, R. E.; Thompson, D. S.; Thornton, T. A.; Thompson, D. W.; Stclair, A. K. Chem Mater 1998, 10, 486.
2. Kim, B. H.; Jung, J. H.; Joo, J.; Kim, J. W.; Choi, H. J. J Korean Phys Soc 2000, 36, 366.
3. Wu, Q.; Xue, Z. Qi, Z.; Wang, F. Polymer, 2000, 41, 2029.
4. Dondi, M.; Marsigli, M.; Venturi, I. Brit Ceram T 1999, 98, 12.
5. Hasegawa, N.; Okamoto, H.; Kawasumi, M.; Usuki, A. J Appl Polym Sci 1999, 74, 3359.
6. Hasegawa, N.; Kawasumi, M.; Kato, M.; Usuki, A.; Okada, A. J Appl Polym Sci 1998, 67, 87.
7. Usuki, A.; Koiwai, A.; Kojima, Y.; Kawasumi, .; Okada, A.; Kurauchi, T.; Kamigaito, O. J Appl Polym Sci 1995, 55, 119.
8. Seckin, T.; Gultek, A.; Onal, Y.; Yakinci, E.; Aksoy, I. J Mater Chem 1997, 7, 265.
9. Huang, J. C.; Zhu, Z. K.; Yin, J.; Qian, X. F.; Sun, Y. Y. Polymer 2001, 42, 873.
10. Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem Mater 1993, 5, 1694.
11. Messersmith, P. B.; Giannelis, E. P. Chem Mater 1994, 6, 1719.
12. Lan, T.; Pinnavaia, T. J. Chem Mater 1994, 6, 2216.
13. Lan, T.; Kaviratna, D.; Pinnavaia, T. J. J Phys Chem Solids 1996, 57, 1005.
14. Capkova, P.; Driessen, R. A. J.; Numan, M.; Schenk, H.; Weiss, Z.; Klika, Z. Chem Pap-Chem Zvesti 1998, 52, 1.
15. Laus, M.; Francescangeli, O.; Sandrolini, F. J Mater Res 1997, 12, 3134.
16. Park, J. S.; Lee, S. M.; Lee, K. Y.; Kim, E. Y.; Lee, H. S. Abs Pap Am Chem Soc 2000, 220, 78-Poly.
17. Ren, J. X.; Silva, A. S.; Krishnamoorti, R. Macromolecules 2000, 33, 3739.
18. Groenewold, J.; Fredrickson, G. H. Eur Phys J E 2001, 5, 171.
19. Maugh, T. H. Science 1983, 222, 39.
20. Wang, M. S.; Pinnavaia, T. J. Chem Mater 1994, 6, 468.
21. Lim, M. S.; Chen, R. P.; Chen, H. Chemistry 1999, 57, 295.
22. Diamond, A. D.; Hsu, J. T. AIChe J 1990, 36, 1017.
23. Chen, W. Y.; Chen, K. H.; Chen, H.; Ruaan, R. C. J Chin Inst Chem Eng 2002, 33, 599.
24. Patrickios, C. S. PhD thesis. Massachusetts institute of technology 1994, 37.
25. Chen, K. H.; Yang, S. M. J Appl Polym Sci 2002, 86, 414.
26. Yen, J. M.; Liou, S. J.; Lai C. Y.; Wu, P. C. Chem Mater 2001, 13, 1131.
1. Southward, R. E.; Thompson, D. S.; Thornton, T. A.; Thompson, D. W.; Stclair, A. K. Chem. Mater. 1998, 10, 486.
2. Kim, B. H.; Jung, J. H.; Joo, J.; Kim, J. W.; Choi, H. J. J. Korean Phys. Soc. 2000, 36, 366.
3. Wu, Q.; Xue, Z. Qi, Z.; Wang, F. Polymer 2000, 41, 2029.
4. Dondi, M.; Marsigli, M.; Venturi, I. Br. Ceram. Trans. 1999, 98, 12.
5. Hasegawa, N.; Okamoto, H.; Kawasumi, M.; Usuki, A. J. Appl. Polym. Sci. 1999, 74, 3359.
6. Hasegawa, N.; Kawasumi, M.; Kato, M.; Usuki, A.; Okada, A. J. Appl. Polym. Sci. 1998, 67, 87.
7. Usuki, A.; Koiwai, A.; Kojima, Y.; Kawasumi, .; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Appl. Polym. Sci. 1995, 55, 119.
8. Seckin, T.; Gultek, A.; Onal, Y.; Yakinci, E.; Aksoy, I. J. Mater. Chem. 1997, 7, 265.
9. Huang, J. C.; Zhu, Z. K.; Yin, J.; Qian, X. F.; Sun, Y. Y. Polymer 2001, 42, 873.
10. Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem. Mater. 1993, 5, 1694.
11. Messersmith, P. B.; Giannelis, E. P. Chem. Mater. 1994, 6, 1719.
12. Liu, X.; Wu, Q. Berglund, L. A.; Fan, J.; Qi, Z. Polymer 2001, 42, 8235.
13. Chang, J. H.; Park, K. M.; Cho, D. H.; Yang, H. S.; Ihn, K. J. Polym. Eng. Sci. 2001, 41, 1514.
14. Gilman, J. W.; Jackson, C. L.; Morgan, A. B.; Hayyis, R., Jr.; Manias, E.; Giannelis, E. P.; Wuthenow, M.; Hilton, D.; Phillips, S. H. Chem Mater 2000, 12, 1866.
15 Faguy P. W., Ma W. L., Lowe J. A., Pan W. P., and Brown T. Faguy, P. W.; Ma, W. L.; Lowe, J. A.; Pan, W. P.; Brown, T. J. Mater. Chem. 1994, 4, 771.
16. Wu, C. G.; Degroot, D. C.; Marcy, H. O.; Schindler, J. L.; Kannewurf, C. R.; Liu, Y. J.; Hirpo, W.; Kanatzidis, M. G. Chem. Mater. 1996, 8, 1992.
17. Uma, S.; Gopalakrishnan, J. Mater. Sci. Eng., B 1995, 34, 175.
18. Liu, Y. J.; Kanatzidis, M. G. Chem. Mater. 1995, 7, 1525.
19. Kerr, T. A.; Wu, H.; Nazar, L. F. Chem. Mater. 1996, 8, 2005.
20. Mccann, G. F.; Millar, G. J.; Bowmaker, G. A.; Cooney, R. P. J. Chem. Soc., Faraday Trans. 1995, 91, 4321.
21. Inanas O. and Cundstrum I., Synth. Met. 1987, 108, 13.
22. Skothein T. A., Handbook conducting polymer, Marcel Dekker, Inc., New York, 1981, 1.
23. Kobayashi, N.; Yamada, K.; Hirohashi, R. Electrochim. Acta. 1992, 37, 2101.
24. Morita, M. J. Polym. Sci., B: Polym. Phys. 1994, 32, 231.
25. Bernard, M. C.; Goff, A. H. L.; Zeng, W. Synth. Met. 1997, 85, 1347.
26. Bernard, M. C.; Goff, A. H. L.; Bich, V. T.; Zeng, W. Synth. Met. 1996, 81, 215.
27. Joo, J.; Epstein, A. J. Appl. Phys. Lett. 1994, 65, 2278.
28. The 2000 Nobel Prize in Chemistry JUNGL. VETENSKAPSAKADEMIEN THE ROYAL SWEDISH ACADEMY OF SCIENCES October 10, 2000.
http://www.nobel.se/chemistry/laureates/2000/public.html
29. Vivier, V.; Cachetvivier, C.; Cha, C. S.; Nedelec, J. Y.; Yu, L. T. Electrochem Commun 2000, 2, 180.
30. Osaka, T.; Naoi, K.; Hirabayashi, T. J Electrochem Soc 1990, 134, 2645.
31. Armelao, L.; Bertoncello, R.; Granozzi, G. Depaoli, G.; Tondello, E.; Battaglin, G. J Mater Chem 1994, 4, 407.
32. Jelle, B. P.; Hagen, G.; Sunde, S.; Odegard, R. Synth Met 1993, 54, 315.
33.Gangopadhyay, R.; De, A. Chem Mater 2000, 12, 608.
34. Sukeerthi, S.; Contractor, A. Q. Anal Chem 1999, 71, 2231.
35. Seymour, R. B. New York: Plenum press, Conductive polymer 1981, 23-28.
36. Seymour, R. B. New York: Plenum press, Conductive polymer 1981, 77-84.
37. Surville, R. D.; Jozefowicz, M. Electrochim Acta 1968, 13, 1451.
38. Abthagir, P. S.; Saraswathi, R. J Appl Polym Sci 2001, 81, 2127.
39. 廖建勛,有機半導體材料與元件 2000.
40. 陳壽安,電子月刊,第七卷,第四期 2000.
41. Araujo, w. S.; Margarit, I. C. P.; Ferreira, M.; Mattos, O. R.; Neto, P. L. 2001, 46, 1307.
42. Epstein, A. J.; Yue, J. US Patent no. 5137991, 1992.
43. Joo, J.; Epstein, A. J. Appl Phys Lett 1994, 65, 2278.
44. Makela, T.; Pienimaa, S.; Taka, T.; Jussila, S.; Isotalo, H. Synth Met 1997, 85, 1335.
45. Racicot, R.; Brown, R.; Yang, S. C. Synth Met 1997, 85, 1263.
46. Kin, P. J.; Silverman, D. C.; Jeffreys, C. R. Synth Met 1997, 85, 1327.
47. Bernard, M. C.; Goff, H. L.; Joiret, S.; Dinh, N. N.; Toan, N. N. Electrochem Soc 1999, 146, 995.
48. Wessling, B.; Posdorfer, J. Electrochim Acta 1999, 44, 2139.
49. Malik, M. A.; Galkowski, M. T.; Bala, H.; Grzybowska, B.; Kulesza, P. J. Electrochim Acta 1999, 44, 2157.
50. Li, C.; Wang, Y.; Wan, M.; Li, S. Synth Met 1991, 39, 90.
51. Ozaki, M.; Peebles, D. L.; Weinberger, B. R.; Hegger A. J.; MacDiarmid, A. G. J Appl Phys 1980, 51, 4252.
52. Kuo, C. T.; Chiou, W. H. Synth Met 1997, 88, 23.
53. Wang, H. L.; MacDiarmid, A. G.; Wang, Y. Z.; Gebler, D. D.; Epstein, A. J. Synth Met 1996, 78, 33.
54. Wang, Y. Z.; Gebler, D. D.; Lin, L. B.; Blatchford, J. W.; Jessen, S. W.; Wang, H. L.; Epstein, A. J. Appl Phys Lett 1996, 68, 894.
55. Chen, S. A.; Chuang, K. R.; Chao, C. I.; Lee, H. T. Synth Met 1996, 82, 207.
56. Gaponik, N. P.; Talapin, D. V.; Dmitri, V.; Rogach, A. L. Phys Chem Chem Phys 1999, 1, 1787.
57. Kobayashi, N.; Yamada, K.; Hirohashi, R. Electrochim Acta 1992, 37, 2101.
58. Morita, M.; J Poly Sci, Part B: Polymer Phys 1994, 32, 231.
59. Bernard, M. C.; Goff, H. L.; Wen, Z. Synth Met 1997, 85, 1347.
60. Bernard, M. C.; Goff, H. L.; Bich, V. T.; Wen, A. Z. Synth Met 1996, 81, 215.
61. Barbero, C.; Miras, M. C.; Koetz, R.; Haas, O. Synth Met 1993, 55, 1539.
62. Tsutsumi, H.; Yamashita, S.; Oishi, T. Synth Met 1997, 85, 1361.
63. Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K. Synth Met 1996, 80, 279.
64. Cui, G.; Lee, J. S.; Kim, S. J.; Nam, H.; Cha, G. S.; Kim, H. D. Analyst 1998, 123, 1855.
65. Takeda, S. Thin Solid Film 1999, 343, 310.
66. Su, T. M.; Ball, I. J.; Conklin, J. A.; Huang, S. C.; Larson, R. K.; Nguyen, S. L. Synth Met 1997, 84, 801.
67. Nishio, K.; Fujimoto, M. J Power Sources 1995, 56, 189).
68. Lai, E. K. W.; Beattie, P. D.; Holdcroft, S. Synth met 1997, 84, 87.
69.Wang, B.; Tang, J. Synth met 1986, 13, 329.
70. Koziel, K.; Lapkowski, M.; Lefrant, S. Synth met 1995, 69, 217.
71. Rannou, P.; Nechtschein, M. Synth met 1997, 84, 755.
72. Bernard, M. C.; Bich, V. T. Synth met 1999, 101, 811.
73. Langer, J. J; Krzyminiewski, R.; Kruczynski, Z.; Gibinski, T.; Czajkowski, I.; Framski, G. Synth Met 2001, 122, 359.
74. Cao, Y.; Li, S.; Xue, Z,; Guo, D. Synth Met 1986, 16, 305.
75. Stejskal, J.; Kratochvil, P. Synth Met 1993, 61, 225.
76. Glarum, S. H.; Marshall, J. H. J. Electrochem. Soc. 1987, 134, 2160.
77. Glarum, S. H.; Marshall, J. H. J Phys. Chem. 1988, 92, 4210.
[1] Inanas, O.; Cundstrum, I. Synth Met 1987, 108, 13.
[2] Skothein, T. A. Handbook conducting polymer, Marcel Dekker, Inc., New York, 1981, 1.
[3] Kobayashi, N.; Yamada, K.; Hirohashi, R. Electrochim Acta 1992, 37, 2101.
[4] Morita, M. J Polym Sci, B: Polym Phys 1994, 32, 231.
[5] Bernard, M. C.; Goff, A. H. L; Zeng, W. Synth Met 1997, 85, 1347.
[6] Bernard, M. C.; Goff, A. H. L.; Bich, V. T.; Zeng, W. Synth Met 1996, 81, 215.
[7] Joo, J.; Epstein, A. J. Appl Phys Lett 1994, 65, 2278.
[8] Southward, R. E.; Thompson, D. S.; Thornton, T. A.; Thompson, D. W.; Stclair, A. K. Chem Mater 1998, 10, 486.
[9] Kim, B. H.; Jung, J. H.; Joo, J.; Kim, J. W.; Choi, H. J. J Korean Phys Soc 2000, 36, 366.
[10] Wu, Q.; Xue, Z.; Qi, Z.; Wang, F. Polymer 2000, 41, 2029.
[11] Dondi, M.; Marsigli, M.; Venturi, I. Br Ceram Trans 1999, 98, 12.
[12] Hasegawa, N.; Okamoto, H.; Kawasumi, M.; Usuki, A. J Appl Polym Sci 1999, 74, 3359.
[13] Hasegawa, N.; Kawasumi, M.; Kato, M.; Usuki, A.; Okada, A. J Appl Polym Sci 1998, 67, 87.
[14] Usuki, A.; Koiwai, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. J Appl Polym Sci 1995, 55, 119.
[15] Seckin, T.; Gultek, A.; Onal, Y.; Yakinci, E.; Aksoy, I. J Mater Chem 1997, 7, 265.
[16] Huang, J. C.; Zhu, Z. K.; Yin, J.; Qian, X. F.; Sun, Y. Y. Polymer 2001, 42, 873.
[17] Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem Mater 1993, 5, 1694.
[18] Messersmith, P. B.; Giannelis, E. P. Chem Mater 1994, 6, 1719.
[19] Liu, X.; Wu, Q.; Berglund, L. A.; Fan, J.; Qi, Z. Polymer 2001, 42, 8235.
[20] Chang, J. H.; Park, K. M.; Cho, D. H.; Yang, H. S.; Ihn, K. J. Polym Eng Sci 2001, 41, 1514.
[21] Wu, Q.; Xue, Z.; Qi, Z.; Wang, F. Polymer 2000, 41, 2029.
[22] Faguy, P. W.; Ma, W. L.; Lowe, J. A.; Pan, W. P.; Brown. T. J Mater Chem 1994, 4, 771.
[23] Wu, C. G.; Degroot, D. C.; Marcy, H. O.; Schindler, J. L.; Kannewurf, C. R.; Liu, Y. J.; Hirpo, W.; Kanatzidis, M. G. Chem Mater 1996, 8, 1992.
[24] Uma, S.; Gopalakrishnan, J. Mater Sci Eng, B 1995, 34, 175.
[25] Liu, Y. J.; Kanatzidis, M. G. Chem Mater 1995, 7, 1525.
[26] Kerr, T. A.; Wu, H.; Nazar, L. F. Chem Mater 1996, 8, 2005.
[27] Mccann, G. F.; Millar, G. J.; Bowmaker, G. A.; Cooney, R. P. J Chem Soc, Faraday Trans 1995, 91, 4321.
[28] 吳宗正,壓電晶體生物感測器之研究與其應用,台灣大學農業化學研究所碩士論文。
[29]Sauerbrey, G. Z. Phys 1959, 155, 205.
[30] Nomura, T.; Nagamune, T.; Izutsu, K.; West, T. S. Bunseki Kagaku 1981, 30, 494.
[31] Fujiwara, N.; Asaka, K.; Nishimura, Y.; Oguro, K.; Torikai, E. Chem Mater 2000, 12, 1750.
[32] User’s Manual of Model 403 Electrochemical Quartz Crystal Microbalance, CH Instruments.
[33] Ballarin, B.; Seeber, R.; Tonelli, D.; Zanardi, C. Electroanalysis 2000, 12, 434.
1. Iijima, S. Nature 1991, 354, 56.
2. Deheer, W. A.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179.
3. Dai, H.; Hafiner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature 1996, 384, 147.
4. Ebbesen, T. W. Phys Today 1996, June, 26.
5. Treay, M. M. J.; Ebbesen, T. W.; Gibson, J. M. 1996, 381, 678.
6. Tabony, J.; Tob, D. Natue 1990, 346, 448.
7. Fan, J. H.; Wan, M. X.; Zhu, D. B.; Chang, B. H.; Pan, Z. W.; Xe, S. S. J Appl Polym Sci 1999, 74, 2605.
8. Fan, J. H.; Wan, M. X.; Zhu, D. B.; Chang, B. H.; Pan, Z. W.; Xe, S. S. Synth Met 1999, 102, 1266.
9. Downs, C.; Nugent, J.; Aiayan, P. M.; Duguette, D. J.; Santhanam, S. V. Adv Mater 1999, 11, 1028.
10. Cao, H. Q.; Tie, C. Y.; Xu, Z.; Hong, J. M.; Sang, H. Appl Phys Lett 2001, 78, 1592.
11. Qiu, H. J.; Wan, M. X.; Matthews, B.; Dai, L. M. Macromolecules 2001, 34, 675.
12. Ozin, G. A. Adv Mater 1992, 4, 612.
13. Kanatzidis, M. G.; Tonge, L. M.; Marks, T. J.; Marcy, H. O.; Kannewurf, C. R. J Am Chem Soc 1987, 109, 3797.
14. Kanatzidis, M. G.; Wu, C. G.; Marcy, H. O.; Kannewurf, C. R. J Am Chem Soc 1989, 111, 4139.
15. Bein, T.; Enzel, P.; Beuneu, F.; Zuppiroli, L. Adv Chem Ser 1990, 226, 433.
16. Martin, C. R. Acc Chem Res 1995, 259, 957.
17. Jerome, C.; Demoustier-Champagne, S.; Legras, R.; Jerome, R. Chem Eur J 2000, 6, 3089.
18. Wu, C. G.; Bein, T. Science 1994, 264, 1757.
19. Wu, C. G.; Bein, T. Science 1994, 266, 1013.
20. Parthasarathy, R. V.; Martin, C. R. Chem Mater 1994, 6, 1627.
21. Wu, C. N.; Chao, K. J.; Tsai, T. G.; Chiou, Y. H.; Shih, H. C. Adv Mater 1996, 8, 1008.
22. Pradhan, B. K.; Toba, T.; Kyotani, T.; Tomita, A. Chem Mater 1998, 10, 2510.
23. Kyotani, T.; Tsai, L. F.; Tomita, A. Chem Mater 1996, 8, 2109.
24. Li, J.; Moskovits, M.; Haslett, T. L. Chem Mater 1998, 10, 1963.
25. Wu, Q.; Xue, Z. Qi, Z.; Wang, F. Polymer 2000, 41, 2029.
26. Inanas O. and Cundstrum I., Synth. Met. 1987, 108, 13.