跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃郁叡
Yu-Rewi Huang
論文名稱: 碳支撐鉑釕銠奈米棒應用於乙醇氧化反應之研究
The Ethanol Oxidation Reaction Performance of Carbon-Supported PtRuRh Nanorods
指導教授: 王冠文
Kuan-Wen Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 84
中文關鍵詞: 鉑釕銠乙醇氧化反應奈米棒雙功能機制含氧物種
外文關鍵詞: PtRuRh, ethanol oxidation reaction, nanorods, bi-functional mechanism, oxygen containing species
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,為了增益白金基催化劑之乙醇氧化反應(ethanol oxidation reaction, EOR)的活性,系統性的合成碳支撐之鉑基催化劑,包含鉑(Pt)、鉑釕(PtRu)、鉑銠(PtRh)以及鉑釕銠(PtRuRh)之奈米棒,並探討一維結構對EOR活性之增益的效果。所製備觸媒之組成、結構、形貌、表面組成、電化學性質分析分別藉由熱場發射掃描式電子顯微鏡-微區元素能量分析儀、X光繞射分析儀、穿透式電子顯微鏡、X光電子能譜儀(X-ray photoelectron spectroscopy, XPS) / 氫氣程溫還原系統(H2-temperature programmed reduction, TPR)、循環伏安法 (cyclic voltammograms) / 線性掃描伏安法 (linear sweep voltammograms) / 計時伏安法(chronoamperometric, CA)進行檢測與分析。
    本研究結果分成兩個部分,第一部分是利用甲酸還原法製備長寬比約為4.6的鉑基奈米棒。並藉由XPS與TPR的分析可得知Pt80Ru3Rh17在表面具備同時具備PtOx, RuOx和RhOx三種含氧物種(oxygen containing species, OCS),且在0.6 V時能提供較高的電流值,說明其表面的OCS可藉由雙功能機制來促進乙醇吸附於鉑表面以提升活性;另外CA的結果也指出Pt80Ru3Rh17觸媒相較於其他觸媒展現出最佳的活性和穩定性,也可以歸功於表面OCS的作用,氧化了CO或是CHx等吸附於鉑表面的中間產物,避免鉑催化劑被毒化。
    第二部分則是探討不同長寬比的鉑釕銠奈米棒對於EOR活性之影響,藉由不同的溫度和成長天數,可成功製備出長寬比分別為4.7, 6.5和8.1的三元Pt80Ru3Rh17。在EOR活性檢驗中,具有最高長寬比的三元PtRuRh觸媒在0.6 V 的電流密度都高於其他兩者;此外,在2小時的CA測試後,最大長寬比之奈米棒同樣顯示了最佳之活性,此結果可歸因於擁有較大長寬比之奈米棒能協助表面OCS形成,促進移除吸附於表面之中間產物。由以上成果可知,控制催化劑的形貌是一有效提升EOR活性之方法。


    In this study, in order to enhance the EOR activity, carbon-supported Pt-based catalysts, including PtRu, PtRh, and PtRuRh nanorods (NRs) have been prepared, and the effect of 1-Dimensional structures on the EOR activity has been investigated. The compositions, structures, morphologies, surface compositions and electrochemical properties of prepared catalysts are analyzed by Field-Emission scanning electron microscope and X-ray energy dispersive spectrometer, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS) / H2-temperature programmed reduction (TPR) and cyclic voltammograms (CV) / linear sweep voltammograms (LSV) / chronoamperometric (CA).
    This study is divided into two parts. In the first part, formic acid method has been used to prepare Pt-based NRs with an aspect ratio of 4.6. XPS and TPR results confirm that ternary Pt80Ru3Rh17can possess oxygen containing species (OCS) including PtOx, RuOx and RhOx onto the surface simultaneously and with high current density at 0.6 V, indicating that the surface OCS can promote the adsorption of ethanol through bi-functional mechanism and thereby enhance the EOR activity. On the other hand, CA results suggest that the ternary Pt80Ru3Rh17 have the highest current density and stability compared to other prepared catalysts, which can be attributed to that the surface OCS help the oxidation of adsorbed intermediates, such as CO or CHx, preventing Pt active sites from poisoning.
    In the second part, the effect of aspect ratios on the EOR activity of PtRuRh NRs has been investigated. The Pt80Ru3Rh17NRs with an aspect ratio of 4.7, 6.5 and 8.1 have been prepared at different temperatures and times. The EOR activity of ternary PtRuRh which possess the largest aspect ratios at 0.6 V is the highest and present the best performance after CA test for 2 hrs, because NRs with large aspect ratios are able to assist the formations of OCS, promoting the removal of adsorbed intermediates. Based on the above results, we have demonstrated that controlling the morphologies is an effective method to enhance EOR performance.

    摘要. i Abstract. iii Acknowledgement.v Table of Contents .. vii List of Figures ix List of Tables. xii Chapter I Introduction..1 1.1 The mechanism of EOR of Pt-based catalysts in acid solution ..2 1.2 The PtRu/C catalysts.6 1.3 Other Pt-based catalysts.8 1.4 The design of 1-D structure for EOR.11 1.5 Motivation and approach.14 Chapter II Experimental Section .15 2.1 Preparation of carbon-supported Pt and Pt-based NRs..15 2.2 Preparation of carbon-supported PtRuRh NRs with various aspect ratios1 8 2.3 Characterizations of the catalysts20 2.3.1 Field-Emission scanning electron microscope and X-ray Energy Dispersive Spectrometer (SEM-EDS).20 2.3.2 X-ray diffraction (XRD) .20 2.3.3 Transmission electron microscopy (TEM) 22 2.3.4 X-ray photoelectron spectroscopy (XPS) ..22 2.3.5 H2-Temperature programmed reduction (TPR)..22 2.3.6 Electrochemical measurements 22 Chapter III Results and Discussion.25 3.1 The EOR activity enhancement of PtRu/C, PtRh/C and PtRuRh/C catalysts .25 3.1.1 The SEM-EDS and XRD characterizations..25 3.1.2 The TEM characterization..28 3.1.3 The XPS and TPR characterizations.28 3.1.4 The electrochemical performance..33 3.2 The structural and EOR activity of PtRuRh/C catalysts with different aspect ratios.44 3.2.1 The SEM-EDS and XRD characterizations..44 3.2.2 The TEM characterization..44 3.2.3 The XPS and TPR characterizations.48 3.2.4 The electrochemical performance..48 Chapter IV Conclusions.59 Reference..61

    [1] M. Li, D. A. Cullen, K. Sasaki, N. S. Marinkovic, K. More and R. R. Adzic, J. Am. Chem. Soc. 135(2013) 132-41.
    [2] M. A. F. Akhairi and S. K. Kamarudin, Int. J. Hydrogen Energy 41 (2016) 4214-28.
    [3] J. L. Tan, A. M. De Jesus, S. L. Chua, J. Sanetuntikul, S. Shanmugam, B. J. V. Tongol and H. Kim, Appl. Catal. A 531 (2017) 29-35.
    [4] A. B. Delpeuch, M. Jacquot, M. Chatenet and C. Cremersa, Phys Chem Chem Phys 18 (2016) 25169-75.
    [5] W. Yu, M. D. Porosoff and J. G. Chen, Chem. Rev. 112 (2012) 5780-817.
    [6] M. Z. F. Kamarudin, S. K. Kamarudin, M. S. Masdar and W. R. W. Daud, Int. J. Hydrogen Energy 38 (2013) 9438-53.
    [7] B. W. Zhang, T. Sheng, Y. X. Wang, X. M. Qu, J. M. Zhang, Z. C. Zhang, H. G. Liao, F. C. Zhu, S. X. Dou, Y. X. Jiang and S. G. Sun, ACS Catal. 7 (2017) 892-5.
    [8] Y. Xu and B. Zhang, Chem. Soc. Rev. 43 (2014) 2439-50.
    [9] R. F. B. De Souza, L. S. Parreira, J. C. M. Silva, F. C. Simões, M. L. Calegaro, M. J. Giz, G. A. Camara, A. O. Neto and M. C. Santos, Int. J. Hydrogen Energy 36 (2011) 11519 -27.
    [10] E. Antolini, J. Power Sources 170 (2007) 1-12.
    [11] S. C. Zignani, V. Baglio, J. J. Linares, G. Monforte, E. R. Gonzalez and A. S. Aricò, Int. J. Hydrogen Energy 38 (2013) 11576-82.
    [12] D. González-Quijano, W. J. Pech-Rodríguez, J. I. Escalante-García, G. Vargas-Gutiérrez and F. J. Rodríguez-Varela, Int. J. Hydrogen Energy 39 (2014) 16676-85.
    [13] J. W. Magee, W. P. Zhou and M. G. White, Appl. Catal. B- Environ. 152 (2014) 397-402.
    [14] S. Shironita, K. Sato, K. Yoshitake and M. Umeda, Electrochim. Acta 206 (2016) 254-8.
    [15] T. R. Garrick, W. Diao, J. M. Tengco, E. A. Stach, S. D. Senanayake, D. A. Chen, J. R. Monnier and J. W. Weidner, Electrochim. Acta 195 (2016) 106-11.
    [16] T. Y. Jeon, K. S. Lee, S. J. Yoo, Y. H. Cho, S. H. Kang, and Y. E. Sung, Langmuir. 26 (2010) 9123-9.
    [17] W. Du, G. Yang, E. Wong, N. A. Deskins, A. I. Frenkel, D. Su and X. Teng, J. Am. Chem. Soc. 136 (2014) 10862-5.
    [18] Q. Wang, G. Wang, H. Tao, Z. Lia and L. Han, RSC Adv. 7 (2017) 8453-9.
    [19] S. Lu, K. Eid, D. Ge, J. Guo, L. Wang, H. Wang and H. Gu, Nanoscale 9 (2017) 1033-9.
    [20] Q. Cheng, Y. Wang, J. Jiang, Z. Zou, Y. Zhou, J. Fang and H. Yang, J. Mater. Chem. A 3 (2015) 15177-83.
    [21] V. M. Schmidt, R. Ianniello, E. Pastor, S. Gonzalez, J. Phys. Chem. 100 (1996) 17901-8.
    [22] M. Xiao, L. Feng, J. Zhu, C. Liu and W. Xing, Nanoscale 7 (2015) 9467-71.
    [23] Z. Yang, X. Yu and Q. Zhang, RSC Adv. 6 (2016) 114014-8.
    [24] Y. Shimazaki, S. Hayasaka, T. Koyama, D. Nagao, Y. Kobayashi and M. Konno, J. Colloid Interface Sci. 351 (2010) 580-3.
    [25] C. Zhou, F. Peng, H. Wang, H. Yu, C. Peng and J. Yang, Electrochem. Commun. 12 (2010) 1210-3.
    [26] L. Liu, L. X. Chen, A. J. Wang, J. Yuan, L. Shen and J. J. Feng, Int. J. Hydrogen Energy 41 (2016) 8871-80.
    [27] W. Zhoua, M. Lia, L. Zhang and S. H. Chan, Electrochim. Acta 123 (2014) 233-9.
    [28] X. Cao, N. Wang, C. Gao, Y. Xu, M. Li and Y. Shao, Nano Energy 12 (2015) 105-14.
    [29] S. M. Kim, Y. G. Jo and S. Y. Lee, Electrochim. Acta 174 (2015) 1244-52.
    [30] Y. Wang, J. Zang, L. Dong, H. Pan, Y. Yuan and Y. Wang, Electrochim. Acta 113 (2013) 583-90.
    [31] Y. Hao, X. Wang, Y. Zheng, J. Shen, J. Yuana, A. Wang, L. Niu and S. Huang, Int. J. Hydrogen Energy 41 (2016) 9303-11.
    [32] P. Mukherjee, P. S. Roy and S. K. Bhattacharya, Int. J. Hydrogen Energy 40 (2015) 13357-67.
    [33] F. Zhang, D. Zhou, Z. Zhang, M. Zhou and Q. Wang, RSC Adv. 5 (2015) 91829-35.
    [34] E. Higuchi, T. Takase, M. Chiku and H. Inoue, J. Power Sources 263 (2014) 280-7.
    [35] A. B. Delpeuch, F. Maillard, M. Chatenet, P. Soudant and C. Cremers, Appl. Catal. B-Environ. 181 (2016) 672-80.
    [36] S. Yang, C. Zhao, C. Ge, X. Dong, X. Liu, Y. Liu, Y. Fang, H. Wang and Z. Li, J. Mater. Chem. 22 (2012) 7104-7.
    [37] J. S. Yoo, H. T. Kim, H. I. Joh, H. Kim and S. H. Moon, Int. J. Hydrogen Energy 36 (2011) 1930-8.
    [38] T. Sheng and S. G. Sun, J. Electroanal. Chem. 781 (2016) 24-9.
    [39] Z. Feng. Xu and Y. Wang, J. Phys. Chem. C 115 (2011) 20565-71.
    [40] L. Rao, Y. X. Jiang, B. W. Zhang, Y. R. Cai and S. G. Sun, Phys Chem Chem Phys 16 (2014) 13662-71.
    [41] T. Kawaguchi, Y. Rachi, W. Sugimoto, Y. Murakami and Y. Takasu, J. Appl. Electrochem. 36 (2006) 1117-25.
    [42] T. Li, P. A. J. Bagot, E. A. Marquis, S. C. E. Tsang and G. D. W. Smith, J. Phys. Chem. C 116 (2012) 17633-40.
    [43] Z. Luo, J. Lu, C. Flox, R. Nafria, A. Genç, J. Arbiol, J. Llorca, M. Ibánez, J. R. Moranteaf and A. Cabot, J. Mater. Chem. A 4 (2016) 16706.
    [44] Y. B. He, G. R. Li, Z. L. Wang, Y. N. Ou and Y. X. Tong, J. Phys. Chem. C 114 (2010) 19175-81.
    [45] P. Song, S. S. Li, L. L. He, J. J. Feng, L. Wu, S. X. Zhong and A. J. Wang, RSC Adv. 5 (2015) 87061-8.
    [46] Y. C. Tseng, H. S. Chen, C. W. Liu, T. H. Yeh and K. W. Wang, J. Mater. Chem. A 2 (2014) 4270-5.
    [47] M. E. Scofield, C. Koenigsmann, L. Wang, H. Liu and S. S. Wong, Energy Environ. Sci. 8 (2015) 350-63.
    [48] W. P. Zhou, M. Li, C. Koenigsmann, C. Ma, S. S. Wong and R. R. Adzic, Electrochim. Acta 56 (2011) 9824-30.
    [49] Y. Shen, B. Gong, K. Xiao and L. Wang, ACS Appl. Mater. Interfaces 9 (2017) 3535-43.
    [50] K. Ding, Y. Zhao, L. Liu, Y. Cao, Q. Wang, H. Gu, X. Yan and Z. Guo, Int. J. Hydrogen Energy 39 (2014) 17622-33.
    [51] T. Vidaković, M. Christov and K. Sundmacher, Electrochim. Acta 52 (2007) 5606-13.
    [52] D. J. You, K. Kwon, S. H. Joo, J. H. Kim, J. M. Kim, C. Pak and H. Chang, Int. J. Hydrogen Energy 37 (2012) 6880-5.
    [53] E. Antolini, ChemSusChem 6 (2013) 966 -73.
    [54] Y. Hu, A. Zhu, Q. Zhang and Q. Liu, Int. J. Hydrogen Energy 41 (2016) 11361.
    [55] H. Wang, S. Chen, C. Wang, K. Zhang, D. Liu, Y. A. Haleem, X. Zheng, B. Ge and L. Song, J. Phys. Chem. C 120 (2016) 6569-76.
    [56] A. Papaderakis, N. Pliatsikas, C. Prochaska, K. M. Papazisi, S. P. Balomenou, D. Tsiplakides, P. Patsalas, and S. Sotiropoulos, Front Chem. 2 (2014) 29.
    [57] K. W. Wang, S. Y. Huang and C. T. Yeh, J. Phys. Chem. C 111 (2007) 5096-100.
    [58] Y. C. Wei, C. W. Liu, W. J. Chang and K. W. Wang, J. Alloys Compd. 509 (2011) 535-41.
    [59] L. Fang , F. J. Vidal-Iglesias , S. E. Huxter and G. A. Attard, J. Electroanal. Chem. 622 (2008) 73-8.
    [60] P. Ochal, J. L. Gomez de la Fuente, M. Tsypkin, F. Seland, S. Sunde , N. Muthuswamy, M Rønning, D. Chen, S. Garcia, S. Alayoglu and B. Eichhorn, J. Electroanal. Chem. 655 (2011) 140-6.
    [61] J. L.Go´mez de la Fuente, F. J. Pe´rez-Alonso, M. V. Martínez-Huerta, M. A. Pen˜a, J. L. G. Fierro and S. Rojas, Catal. Today 143 (2009) 69-75.
    [62] V. D. Noto and E. Negro, J. Power Sources 195 (2010) 638-48.
    [63] D. Wang, J. Wang, S. Lu and S. P. Jiang, J. Electroanal. Chem. 712 (2014) 55-61.
    [64] F. H. B. Lima and E. R. Gonzalez, Electrochim. Acta 53 (2008) 2963-71.
    [65] C. W. Liu, Y. W. Chang, Y.C. Wei and K. W. Wang, Electrochim. Acta 56 (2011) 2574-81.
    [66] M. Zhu, G. Sun and Q. Xin, Electrochim. Acta 54 (2009) 1511-8.
    [67] S. Beyhan, J. M. Léger and F. Kadırgan, Appl. Catal. B-Environ. 144 (2014) 66-74.
    [68] D. González-Quijano, W. J. Pech-Rodríguez, J. A. González-Quijano, J. I. Escalante-García, G. Vargas-Gutiérrez, I. Alonso-Lemus and F. J. Rodríguez-Varela, Int. J. Hydrogen Energy 40 (2015) 17291-9.
    [69] B. Dinesh and R. Saraswathi, Int. J. Hydrogen Energy 41 (2016) 13448-58.
    [70] A. B. Delpeuch, M. Chatenet, M. S. Rau and C. Cremers, Phys. Chem. Chem. Phys. 17 (2015) 10881-93.
    [71] T. Maiyalagan, T. O. Alaje, and K. Scott, J. Phys. Chem. C 116 (2012) 2630-8.
    [72] M. Sedighi, A. A. Rostami and E. Alizadeh, Int. J. Hydrogen Energy 42 (2017) 4998-5005.
    [73] N. Erini, R. Loukrakpam, V. Petkov, E. A. Baranova, R. Yang, D. Teschner, Y. Huang, S. R. Brankovic and P. Strasser, ACS Catal. 4 (2014) 1859-67.
    [74] S. Sun, G. Zhang, D. Geng, Y. Chen, M. N. Banis, R. Li, M. Cai and X. Sun, Chem. Eur. J. 16 (2010) 829-35.
    [75] S. Sun, F. Jaouen and J. P. Dodelet, Adv. Mater. 20 (2008) 3900-4.
    [76] A. A. Ensafi, M. Jafari-Asl and B. Rezaei, Phys.Chem.Chem.Phys. 17 (2015) 23770-82.
    [77] S. Chen, H. Zhang, L. Wu, Y. Zhao, C. Huang, M. Ge and Z. Liu, J. Mater. Chem. 22 (2012) 9117- 22.
    [78] Y. T. Liang, C. W. Liu, H. S. Chen, T. J. Lin, C. Y. Yang, T. L. Chen, C. H. Lin, M. C. Tu and K. W. Wang, RSC Adv. 5 (2015) 39205-8.
    [79] J. M. Jacob, P. G. Corradini, E. Antolini, N. A. Santos and J. Perez, Appl. Catal. B-Environ. 165 (2015) 176-84.
    [80] S. Das, K. Dutta and P. P. Kundu, J. Mater. Chem. A 3 (2015) 11349-57.

    QR CODE
    :::