| 研究生: |
黃楷斌 Kai-Pin Huang |
|---|---|
| 論文名稱: |
低成本之碳熱還原法製備LiFePO4/C鋰離子電池複合陰極材料 A simple, cheap carbonthermal reduction method to synthesize LiFePO4 |
| 指導教授: |
費定國
George Ting-Kuo Fey |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 鋰離子電池 、磷酸亞鐵鋰 、碳熱還原法 、碳塗佈 、陰極材料 |
| 外文關鍵詞: | cathode materials, carbon coating, LiFePO4, carbonthermal reduction method, Li-ion battery |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磷酸亞鐵鋰具有低成本、低汙染、良好熱穩定性與長循環壽命等優點,因此成為近年來熱門研究的鋰離子電池陰極材料。然而,其也有電子導電度低、離子擴散速率低與量產不易等缺點,使其電池性能受到限制。為了克服以上的缺點,許多學者提出各種方法,諸如掺雜金屬、表面塗佈與控制粒徑等,這些方法雖能有效地解決磷酸亞鐵鋰的缺點,卻使生產成本提高,降低其商業價值。為了降低成本,本論文以簡易的碳熱還原法配合工業級碳源合成磷酸亞鐵鋰,起始物全面改用工業級原料,鐵源更使用便宜之氧化鐵。
從實驗結果得知,球磨液添加量有最小限制量,本製程以煆燒溫度973 K,煆燒時間8小時所合成出的LiFePO4具有優良的導電度 (4.42×10-4 S cm-1),對於磷酸亞鐵鋰/C複合材料,吾人亦利用XRD、SEM、TEM、EDS、DSC、CV與拉曼光譜等鑑定,以進一步了解吾人所製備材料的特性。電池性能方面,吾人所製備的材料於0.2 C充放電率,4.0 V/2.8 V 充放電電壓條件下,初始電容量為150 mAh g-1,經過50次充放電循環後,電池放電電容量幾乎沒有衰退。
Olivine-structured lithium iron phosphates (LiFePO4) become a promising cathode material because of its low cost, low toxicity, remarkable thermal stability and long operation life. However, it was hard to scale up and reported that this cathode has very low electronic conductivity and diffusion-controlled kinetics. To overcome the problems, various methods have been widely used such as lattice metal doping, surface carbon coating and optimizing the particle size. In order to cut down the synthesis cost, simplify the synthesis technology and enhance the specific capacity of the material, we introduced a carbothermal reduction (CTR) method based on the presence of PEG to synthesize well-carbon-network LiFePO4 by using industrial raw materials and chose ferric oxide as staring material.
From our results, a required amount of acetone was added to the starting materials for the ball milling process and the precursor was sintered at 700 ℃ for 8 h to form crystalline phase LiFePO4 with greater electronic conductivity (4.42×10-4 S cm-1). The structure and morphology of the carbon coated LiFePO4 samples have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and differential scanning calorimetry (DSC), cyclic voltammetry (CV), and raman spectroscopy, and so on.. Electrochemical measurements show that the LiFePO4/C composite cathode delivered an initial discharge of 150 mAh g-1 at a 0.2 C-rate between 4.0-2.8 V, and almost no capacity loss was observed up to 50 cycles
1. B. Huang, Y. I. Jang, Y. M. Chiang, D. R. Sadoway, J. App. Electrochem. 28 (1998) 1365.
2. K. M. Abraham, D. M. Pasquariello, E. M. Willstaedt, J. Electrochem. Soc. 145 (1998) 482.
3. H. Abe, T. Murai, K. Zaghib, J. Power Sources 77 (1999) 110.
4. J. B. Goodenough, J. Power Sources 174 (2007) 996.
5. 東芝研發出新型迷你鋰電池 充電僅需一分鐘 (2005.3.29) http://www.epochtimes.com/b5/5/3/29/n870674.htm
6. H. Liu, H. G. Sun, D. L. Zhou, P. Zhou, G. F. Yin, Solid Mater. Sci. Eng. 36 (2004) 7.
7. U. V. Sacken, M. W. Juzkow, H. A. Janaby, J. Electrochem. Soc. 138 (1991) 2207.
8. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.
9. D. Guyomard, J. M. Tarascon, J. Electrochem. Soc., 140 (1993) 3071.
10. G. T. K. Fey, K. S. Wang, S. M. Yang, J. Power Sources 68 (1997) 159.
11. G. T. K. Fey, D. L. Huang, Electrochimica Acta 45 (1999) 295.
12. 陳金銘, 工業材料雜誌 256 (2008) 135.
13. 舊瓶裝新酒 MIT研發超級鋰電10秒快速充電 (2009.3.12) http://tw.news.yahoo.com/article/url/d/a/090312/19/1fwzy.html
14. K. Mizushima, P. C. Jones, P. J. Wiseman, Mater. Res. Bull. 15 (1980) 783.
15. Y. S. Horm, L. Croguennec, C. Delmas, E. C. Nelson, M. A. Okeefe, Nat Mater. 2 (2003) 464.
16. J. N. Reimers, J. R. Dahn, J. Electrochem. Soc. 139 (1992) 2091.
17. J. Cho, T. J. Kim, Y. J. Kim, B. Park, Angew. Chem. Int. Ed. 40 (2001) 3367.
18. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta 38 (1993) 1159.
19. Structure of nanocrystals by the Atomic Pair Distribution Function Technique: A case study of K-Li-Mn-O-I. (2006.4.10) http://www.phy.cmich.edu/people/petkov/nano.html
20. A. Yamada, M. Tanaka, Mater. Res. Bull. 30 (1995) 715.
21. J. Hassoun, P. Reale, B. Scrosati, J. Mater. Chem. 17 (2007) 3668.
22. A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1609.
23. 必翔電能公司網站 各種電池比較 (2007.5.9) http://www.phet.com.tw/Products/Products_Intro.aspx.
24. 磷酸亞鐵鋰的調查 (2008.3.21) http://www.wcoat.com/87419/mode-reply.html
25. 車用鋰電池是否能“牛”起來 (2009.1.13)
http://www5.cnfol.com/big5/auto.cnfol.com/090113/169,1684,5333113,00.shtml
26. K. Mizushima, P. G. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull. 15 (1980)
789.
27. M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough, ibid 20 (1985) 1137.
28. A. R. Armstrong, P. G. Bruce, Nature 381 (1996) 499.
29. M. M. Thackeray, P. J. Johnson, L. A. D. Piciotto, P. G. Bruce, J. B. Goodenough, Mater. Res. Bull. 19 (1984) 179.
30. 高中化學 學習加油站 (2006.5.6) http://140.111.1.12/senior/chemistry/tp_sc/tag.3.12.6.html
31. Y. Takeda, K. Nakahara, M. Nishijima, N. Imanishi, O. Yamamoto, M. Takao, R. Kanno, Mater. Res. Bull. 29 (1994) 659
32. J. Li, W. Yao, S. Martin, D. Vaknin, Solid State Ionics 179 (2008) 2016.
33. M. Thackeray, Nature Mater. 2 (2002) 81.
34. A. S. Andersson, J. O. Tomas, J. Power Sources 97-98 (2001) 498.
35. L. Laffont, C. Delacourt, P. Gibot, M. Yue Wu, P. Kooyman, C. Masquelier, and J. Marie Tarascon, Chem. Mater. 18 (2006) 5520.
36. C. Delmas, M. Maccario, L. Croguennec, F. L. Cras, F. Weill, Nature 7 (2008) 665.
37. A. Yamada,S. C. Chung, K. Hinokuma, J. Electrochem. Soc. 148 (2001) A224.
38. J. Barker, M. Y. Saidi, J. L. Swoyer, Electrochem. Solid-State Lett. 6 (2003) A53.
39. 當前國內磷酸鐵鋰現狀 (2008.10.15)
http://big5.jrj.com.cn/gate/big5/000559.istock.jrj.com.cn/forum000559/topic819962.html
40. F. Croce, A. D. Epifanio,a J. Hassoun, A. Deptula, T. Olczac, B. Scrosatia, Electrochem. Solid-State Lett. 5 (2002) A47.
41. M. A. E. Sanchez, G. E. S. Brito, M. C. A. Fantini, G. F. Goya, J. R. Matos, Solid State Ionics 177 (2006) 497 .
42. M. C. Tucker, M. M. Doeff, T. J. Richardson, R. Finones, J. A. Reimer, E. J. Cairns, Electrochem. Solid-State Lett. 5 (2002) A95.
43. S. Yang, Y. Song, P. Y. Zavalij, M. S. Whittingham, Electrochem. Comm. 4 (2002) 239.
44. S. Yang, P. Y. Zavalij, M. S. Whittingham, Electrochem. Comm. 3 (2001) 505.
45. S. L. Bewlay, K. Konstantinov, G. X. Wang, S. X. Dou, H. K. Liu, Mater. Lett. 58 (2004) 1788.
46. S. H. Ju, Y. C. Kang, Mater. Chem. Phy. 107 (2008) 328.
47. M. Konarova, I. Taniguchi, Mater. Res. Bull. 43 (2008) 3305.
48. S. J. Kwon, C. W. Kim, W. T. Jeong , K. S. Lee, J. Power Sources 137 (2004) 93.
49. G. Arnold, J. Garche, R. Hemmer, S. Strőbele, C. Vogler, M. W. Mehrens, J. Power Sources 119–121 (2003) 247.
50. M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhar, J. Power Sources 119–121 (2003) 258.
51. G. R. Hu, X. G. Gao, Z. D. Peng, K. D., Y. J. Liu, Chin. Chem. Lett. 18 (2007) 337.
52. J. F. Ni, H. H. Zhou, J. T. Chen, X. X. Zhang, Mater. Lett. 61 (2007) 1260.
53. H. Liu, D. Tang, Solid State Ionics 179 (2008) 1897.
54. A. S. Andersson, J. O. Thomas, B. Kalska, L. Häggströmb, Electrochem. Solid-State Lett. 3 (2000) 66.
55. N. Ravet, J. B. Goodenough, S. Besner, M. Simoneau, P. Hovington and M. Armand, ECS Fall Meeting (1999) abstract 128.
56. H. Huang, S. C. Yin, L. F. Nazarz, Electrochem. Solid-State Lett., 4 (2001) A170.
57. D. Choi, P. N. Kumta, J. Power Sources 163 (2007) 1064.
58. Z. Chen, J. R. Dahn, J. Electrochem. Soc., 149 (2002) A1184
59. G.T.K. Fey, T. L. Lu, J. Power Sources 178 (2008) 807.
60. G.T.K. Fey, T. L. Lu, F. Y. Wu, W. H. Li, J. Solid State Electrochem. 12 (2008) 825.
61. Y. D. Cho, G. T. K. Fey, H. M. Kao, J. Power Sources 189 (2009) 256.
62. C. Z. Lu, G. T. K. Fey, H. M. Kao, J. Power Sources 189 (2009) 155.
63. H. Liu, G. X. Wang, D. Wexler, J. Z. Wang, H. K. Liu, Electrochem. Comm. 10 (2008) 165.
64. H. H Chang, C. C. Chang, C. Y. Sub, H. C. Wub, M. H. Yang, N. L. W., J. Power Sources 185 (2008) 466.
65. B. Kang, G. Ceder, Nature 458 (2009) 190.
66. S. Y. Chung, J T. Blocking, Y. M. Chiang, Nature Mater. 2 (2002) 123.
67. N. Penazzi, M. Arrabito, M. Piana, S. Bodoardo, S. Panero, I. Amadei, J. Eur. Ceram. Soc. 24 (2004) 1381.
68. A. Nytén, J. O. Thomas, Solid State Ionics 177 (2006) 1327.
69. D. Wang, Z. Wang, X. Huang, L. Chen, J. Power Sources 146 (2005) 580.
70. D. Wang, H. Li, S. Shi, X. Huang, L. Chen, Electrochim. Acta 50 (2005) 2955.
71. A. Goni , L. Lezam, A. Pujan , M. I Arriortu , T. Rojo, Int. J. Inorg. Mate. 3 (2001) 937.
72. J. Yao, K. Konstantinov, G. X. Wang, H. K. Liu, J. Solid State Electrochem. (2005) 11 (2007) 177.
73. J. Hong, C. Wang, U. Kasavajjul, J. Power Sources 162 (2006) 1289.
74. J. Marzec, W. Ojczyk, J. Molenda, Mater. Sci.-Poland 24 (2006) 69.
75. T. Nakamura, Y. Miwa, M. Tabuchi, J. Electrochem. Society 153 (2006) A1108.
76. J. Molenda , W. Ojczyk, K. Świerczek, W. Zając, F. Krok, J. Dygas, R. S. Liu, Solid State Ionics 177 (2006) 2617.
77. W. Ojczyk, J. Marzec, J. Dygas, F. Krok, R. S. Liu, J. Molenda, Mater. Sci.-Poland, 24 (2006) 103.
78. M. Zhang, L. F. Jiao, H. T. Yuan, Y. M. Wang, J. Guo, M. Zhao, W. Wang, X. D. Zhou, Solid State Ionics 177 (2006) 3309.
79. S. T. Yang, T. J. Li, J. Inorg. Mater. 21 (2006) 880.
80. Y. H. Sun, X. Q. Liu, Chin. Chem. Lett. 17 (2006) 1093.
81. G. Wang, Y. Cheng, M. Yan, Z. Jiang, J. Solid State Electrochem. 11 (2007) 457.
82. Y. L. Ruan, Z. Y. Tang, Electrochem. 12 (2006) 315.
83. C. Y. Ouyang, S. Q. Shi, Z. X. Wang, H. Li, X. J. Huang, L. Q. Chen, J. Phys.: Condens. Matter 16 (2004) 2265.
84. H. C. Shin, S. B. Park, H. Jang, K. Y. Chung, W. I. Cho, C. S. Kim, B. W. Cho, Electrochim. Acta 53 (2008) 7946.
85. V. Lemos, S. Guerini, J. M. Filho, S. M. Lala, L. A. Montoro, J. M. Rosolen, Solid State Ionics 177 (2006) 1021.
86. H. Xie, Z. Zhou, Electrochim. Acta 51 (2006) 2063.
87. D. G. Zhuang, X. B. Zhao, J. T. Xie, J. Tu, T. J. Zhu, G. S. Cao, Acta Phys. -Chim. Sin. 22 (2006) 840.
88. C. H. Mi, X.G. Zhang, H.L. Li, J. Electroanal. Chem. 602 (2007) 245.
89. H. Liu, Q. Cao, L. J. Fu, C. Li, Y. P. Wu , H. Q. Wu, Electrochem. Comm. 8 (2006) 1553.
90. Y. D. Cho, G. T. K. Fey, H. M. Kao, J. Solid Electrochem. 12 (2008) 815.
91. K. Zaghib , P. Charest , A. Guerfi , J. Shim, M. Perrier, K. Striebel, J. Power Sources 134 (2004) 124.
92. Y. Xia, M. Yoshio, H. Noguchi, Electrochim. Acta 52 (2006) 240.
93. J. K. Kim, G. Cheruvally, J. W. Choi, J. U. Kim, J. H. Ahn, G. B. Chob, K. W. Kim, H. J. Ahn, J. Power Sources 166 (2007) 211.
94. G. T. K. Fey, Y. G. Chen, H. M. Kao, J. Power Sources 189 (2009) 169.
95. Y. Z. Dong, Y. M. Zhao, Y.H. Chen, Z. F. He, Q. Kuang, Mater. Chem. Phy. 115 (2009) 245.
96. G.X. Wang, L. Yang, Y. Chen, J. Z. Wang, S. Bewlay, H. K. Liu, Electrochim. Acta 50 (2005) 4649.
97. J. Lu , Z. Tang, Z. Zhang, W. Shen, Mater. Res. Bull. 40 (2005) 2039.
98. H. M. Xie, R. S. Wang, J. R. Ying, L. Y. Zhang, A. F. Jalbout, H. Y. Yu, G. L. Yang, X. M. Pan, Z. M. Su, Adv. Mater. 18 (2006), 2609.
99. L. N. Wang, Z. G. Zhang, K. L. Zhang, J. Power Sources 167 (2007) 200.
100. H. Liu, Y. Feng, Z. Wang, K. Wang, J. Xie, Powder Technol. 184 (2008) 313.
101. A. V. Murugan, T. Muraliganth, A. Manthiram, Electrochem. Comm. 10 (2008) 903.
102. J. M. Chen, C. H. Hsu, Y. R. Lin, M. H. Hsiao, G. T. K. Fey, J. Power Sources 167 (2007) 200.
103. 呂東霖, 碩士論文, 國立中央大學, 中華民國台灣 (2007).
104. 徐文祥, 碩士論文, 國立中央大學, 中華民國台灣 (2006).
105. 卓永達, 碩士論文, 國立中央大學, 中華民國台灣 (2002).
106. 張忠勝, 碩士論文, 國立中央大學, 中華民國台灣 (2007).
107. S.T. Myung, S. Komaba, N. Hirosaki, H. Yashiro, N. Kumagai, Electrochim. Acta 49 (2004) 4213.
108. R. Dominko, J M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. Jamnik, J. Electrochem. Soc. 152 (2005) A858.
109. K.F. Hsu, S. Y. Tsaya, B. J. Hwang, J. Mater. Chem. 14 (2004) 2690.
110. X. Liao, Z. Ma, L. Wang, X. Zhang, Y. Jiang, Y. Hea, Electrochem. Solid State Lett. 7 (2004) A522.
111. S. J. Kwon, C. W. Kim, W. T. Jeong, K. S. Lee, J. Power Sources 137 (2004) 93.
112. H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q. Wu, J. Power Sources 159 (2006) 717.
113. K.F. Hsu, S.Y. Tsay, B.J. Hwang, J. Power Sources 146 (2005) 529.
114. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn., chapter 5.2, Prentice Hall Publishers, New Jersey, USA (2001).
115. J. Ma, C. Wang, S. Wroblewski, J. Power Sources 164 (2007) 849.
116. J. Moskon, R. Dominko, M. Gaberscek, R. Cerc-Korosec, J. Jamnik, J. Electrochem. Soc. 153 (2006) A1805.
117. J.R. Dahn, J. Jiang, L.M. Moshurchak, M.D. Fleischauer, C. Buhrmester, L.J. Krause, J. Electrochem. Soc. 152 (2005) A1283.
118. Y. Hu, M.M. Doeff, R. Kostecki, R. Fiñones, J. Electrochem. Soc. 151 (2004) A1279.
119. L. J. van der Pauw, Phil. Res. Rep. 13 (1958) 1.