| 研究生: |
許育慎 Yu-Shen Hsu |
|---|---|
| 論文名稱: |
利用水相原位創新法合成酵素有機金屬骨架複合材料及酵素失活機制之探討 |
| 指導教授: |
謝發坤
Fa-Kuen Shieh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 有機金屬骨架材料 、酵素有機金屬骨架材料 、水相原位創新法 、酵素摺疊效應 |
| 外文關鍵詞: | CAT@ZIF-90 |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室於2015年以原位創新合成(de novo approach)的方式將過氧化氫酶(Catalase)包入咪唑骨架材料-90 (ZIF-90)之中。此方法所合成的酵素有機金屬骨架複合材料可藉由ZIF-90的孔洞性質保護酵素不被大分子蛋白質水解酶攻擊的同時,仍能維持酵素活性運作。而本研究則更近一步的利用此材料來探討酵素在蛋白質變性因子-尿素中的表現。
本研究假設在原位創新法合成中ZIF-90在包覆酵素時,會限制住了酵素周圍的空間,使酵素難以進行構形的變化。為證明酵素在ZIF-90中難以變換構形,本研究將酵素有機金屬骨架複合材料置入變性試劑(Denaturant reagent):尿素之中進行一系探討。預測由於空間限制的作用,即使在尿素環境中,酵素仍保有活性。本研究亦利用中孔矽材(MCF、SBA-15)作為對照組,探討在尿素環境下的活性變化。活性測試(Activity assay)與螢光光譜(Fluorescence spectrum)等實驗結果證明了ZIF-90對酵素產生空間限制的假設,也證明了尿素使酵素失活的機制與酵素構形相關。此外,酵素有機金屬骨架複合材料在其他嚴苛環境如高溫、有機溶劑中能具有活性,同時藉由螢光光譜的結構測定,討論其他嚴苛環境中酵素活性與構形的關聯性。
Recently, our group has successfully embedded catalase (CAT) into zeolitic imidazolate frameworks-90 (ZIF-90) via de novo approach. In the de novo approach, the ZIF-90 are grown around the enzyme molecules under a mild synthetic condition. Remarkably, the biological activity of biocomposites is able to be maintained as proteinase K, the enzyme that can digest proteins, is existing with large molecule size due to the size selectivity of ZIF-90 porous.
In this work, we hypothesized that the enzyme molecules are confined in the tight mesoporous cavities left in the MOF crystals by growth of the framework around the enzyme molecules which reduces the structural changes of enzymes. In order to test this hypothesis, we exposed the CAT@ZIF-90 to and free CAT to a denature reagent (i.e., urea) and high temperatures (i.e., 80 °C) and examined their resulting catalytic activity, accompanied by fluorescence spectroscopy to monitor the structural conformation changes of the enzymes. The results show that embedded CAT maintains its biological function even when exposed to 6 M urea and 80 °C, respectively, while free CAT shows undetectable activity. A fluorescence spectroscopy study indicates that the structural conformation of the embedded CAT changes less under these denaturing conditions than free CAT. We have not only demonstrated that CAT maintains its biological function under unfolding conditions after being embedded in ZIF microcrystals via a de novo approach but also performed fluorescence spectroscopy to provide an in situ observation that the structural conformation of CAT in ZIFs is mostly maintained.
1. Yaghi, O.M.O.K., M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., , Reticular synthesis and the design of new materials. Nature, 2003. 423( 6941): 705-714.
2. Furukawa, H.C., K. E.; O’Keeffe, M.; Yaghi, O. M., , The Chemistry and Applications of Metal-Organic Frameworks. Science, 2013. 341(6149).
3. Suh, M.P.P., H. J.; Prasad, T. K.; Lim, D.-W., , Hydrogen Storage in Metal–Organic Frameworks. . Chem. Rev., 2011. 112(2): 782-835.
4. Getman, R.B.B., Y.-S.; Wilmer, C. E.; Snurr, R. Q.,, Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chem. Rev, 2011. 112(2): 703-723.
5. Li, J.-R.S., J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chem. Rev., 2011. 112(2): 869-932.
6. Yoon, M.S., R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev., 2011. 112(2): 1196-1231.
7. Horcajada, P.G., R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chem. Rev. , 2011. 112(2): 1232-1268.
8. Kreno, L.E.L., K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. , 2011. 112(2): 1105-1125.
9. W. J. Rieter, K.M.L.T., and W. Lin*, Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing. J. Am. Chem. Soc., 2007. 129(32): 9852–9853.
10. Bétard, A.F., R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chem. Rev., 2011. 112(2): 1055-1083.
11. Yoon, M.S., K.; Natarajan, S.; Kim, K., Proton Conduction in Metal–Organic Frameworks and Related Modularly Built Porous Solids. . Angew. Chem. Int. Ed. , 2013. 52(10): 2688-2700.
12. Li, S.-L.X., Q., Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci., 2013. 6(6): 1656-1683.
13. B. Li, H.-M.W., Y. Cui, W. Zhou, G. Qian,* and B. Chen*, Emerging Multifunctional Metal–Organic Framework Materials. Adv. Mater., 2016. 28(40): 8819-8860.
14. H. Park, S.K., B. Jung, M. H. Park, Y. Kim, and M. Kim, Defect Engineering into Metal–Organic Frameworks for the Rapid and Sequential Installation of Functionalities. Inorganic Chemistry Communications, 2018. 57 (3): 1040-1047.
15. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. . Angew. Chem., Int. Ed. Engl., 1985. 24(12): 1026-1040.
16. Klinowski, J.A.P., F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Trans., 2011. 40(2): 321-330.
17. Ameloot, R.S., L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chem. Mater., 2009. 21(13): 2580-2582.
18. Pichon, A.L.-G., A.; James, S. L., Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm, 2006. 8(3): 211-214.
19. Qiu, L.-G.L., Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun., 2008(31): 3642-3644.
20. Z. Wang, D.A., Arnau C.‐S., C. D. S. Brites,I. Imaz,D. Maspoch, J. Rocha, L. D. Carlos, Lanthanide–Organic Framework Nanothermometers Prepared by Spray‐Drying. Adv. Funct. Mater., 2015. 25v(19): 2824-2830.
21. Marta R.-M., C.A.-C., A. W. Thornton, I. Imaz , D. Maspoch and M. R. Hill New synthetic routes towards MOF production at scale. Chem. Soc. Rev., 2017. 46: 3453-3480.
22. Stock, N.B., S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev., 2011. 112(2): 933-969.
23. Banerjee, R.P., A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. . Science, 2008. 319(5865): 939-943.
24. Phan, A.D., C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. . Acc. Chem. Res., 2009. 43(1): 58-67.
25. N. Masciocchi, S.B., E. Cariati, F. Cariati, S. Galli, A. Sironi, , Extended Polymorphism in Copper(II) Imidazolate Polymers: A Spectroscopic and XRPD Structural Study. Inorg. Chem., 2001. 40(23): 5897-5905.
26. X.-C. Huang, Y.-Y., Lin, J.-P. Zhang, X.-M. Chen, Ligand-Directed Strategy for Zeolite-Type Metal-Organic FrameworksL Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angew. Chem. Int. Ed., 2006. 45(10): 1557-1559.
27. Park, K.S.N., Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. , Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci., 2006. 103(27): 10186-10191.
28. Pérez-Pellitero, J.A., H.; Siperstein, F. R.; Pirngruber, G.; Nieto-Draghi, C.; Chaplais, G.; Simon-Masseron, A.; Bazer-Bachi, D.; Peralta, D.; Bats, N., Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations. . Chem. Eur. J. , 2010. 16(5): 1560-1571.
29. Pan, Y.L., Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem. Commun., 2011. 47(373): 10275-10277.
30. Wu, H.Z., W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. . J. Am. Chem. Soc., 2007. 129(17): 5314-5315.
31. Kuo, C.-H.T., Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. J. Am. Chem. Soc., 2012. 134(35): 14345-14348.
32. Chen, E.-X.Y., H.; Zhang, J., Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. . Inorg. Chem., 2014. 53(11): 5411-5413.
33. Vasconcelos, I.B.S., T. G. d.; Militao, G. C. G.; Soares, T. A.; Rodrigues, N. M.; Rodrigues, M. O.; Costa, N. B. d.; Freire, R. O.; Junior, S. A., Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. . RSC Adv., 2012. 2(25): 9437-9442.
34. Morris, W.D., C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc., 2008. 130(38): 12626-12627.
35. Everett, D.H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure Appl. Chem., 1972. 31(4): 577-638.
36. Hudson, S.P.P., R. F.; Langer, R.; Kohane, D. S. , The biocompatibility of mesoporous silicates. Biomaterials 2008(30): 4045-4055.
37. Lee, C.-H.L., T.-S.; Mou, C.-Y. , Mesoporous Materials for Encapsulating Enzymes. Nano Today, 2009. 4: 165-179.
38. B. H. Lee, J.O., H. H. Tseng, Rajarao J.,H. Huff, Gate stack technology for nanoscale devices. Mater. Today, 2006. 9(6): 32-41.
39. Dáša Halamová, M.B., Vladimír Zeleňák, Taťána Gondová, UllaVainioc, Naproxen drug delivery using periodic mesoporous silica SBA-15. Appl. Surf. Sci., 2010. 256(22): 6489-6494.
40. Appell M, J.M., D.-K. MA, Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15. Hazard Mater. , 2011. 187: 150-156.
41. Beck, J.S.V., J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates J. Am. Chem. Soc. 1992, 114, 10834, 1992. 114(27): 10834-10843.
42. Huo, Q., et al., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature, 1994. 368(6469): 317-321.
43. Huo, Q., et al., Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chemistry of Materials, 1994. 6(8): 1176-1191.
44. Sakamoto, Y., et al., Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature, 2000. 408(6811): 449-453.
45. Kim, M.J. and R. Ryoo, Synthesis and Pore Size Control of Cubic Mesoporous Silica SBA-1. Chemistry of Materials, 1999. 11(2): 487-491.
46. Tanev, P.T. and T.J. Pinnavaia, A Neutral Templating Route to Mesoporous Molecular Sieves. Science, 1995. 267(5199): 865-867.
47. Beck, J.S., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992. 114(27): 10834-10843.
48. Zhao, D., et al., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 1998. 279(5350): 548-552.
49. Liu, J., et al., Hybrid Mesoporous Materials with Functionalized Monolayers. Advanced Materials, 1998. 10(2): 161-165.
50. Stein, A., B.J. Melde, and R.C. Schroden, Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age. Advanced Materials, 2000. 12(19): 1403-1419.
51. Israelachvili, J.N., D.J. Mitchell, and B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1976. 72(0): 1525-1568.
52. Kresge, C.T., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992. 359(6397): 710-712.
53. Lee, Y.S., D. Surjadi, and J.F. Rathman, Effects of Aluminate and Silicate on the Structure of Quaternary Ammonium Surfactant Aggregates. Langmuir, 1996. 12(26): 6202-6210.
54. Ko, C.H. and R. Ryoo, Imaging the channels in mesoporous molecular sieves with platinum. Chemical Communications, 1996. 0(21): 2467-2468.
55. Abe, T., et al., Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate. Journal of the Chemical Society, Chemical Communications, 1995. 0(16): 1617-1618.
56. Tsang, S.C., et al., Immobilization of small proteins in carbon nanotubes: high-resolution transmission electron microscopy study and catalytic activity. Journal of the Chemical Society, Chemical Communications, 1995. 0(17): 1803-1804.
57. Schmidt-Winkel, P., et al., Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows. Journal of the American Chemical Society, 1998. 121(1): 254-255.
58. Lettow, J.S., et al., Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas. Langmuir, 2000. 16(22): 8291-8295.
59. Messing, R.A., Chapter 1 - INTRODUCTION AND GENERAL HISTORY OF IMMOBILIZED ENZYMES In Immobilized Enzymes for Industrial Reactors, 1975. Messing, R. A., Ed. Academic Press: : 1-10.
60. Datta, S., L.R. Christena, and Y. Rajaram, Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 2013. 3(1): 1-9.
61. Brady, D. and J. Jordaan, Advances in enzyme immobilisation. Biotechnology Letters, 2009. 31(11): 1639-1650.
62. Chen, Y., et al., Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal–Organic Framework with Hierarchical Pore Sizes. Inorganic Chemistry, 2012. 51(17): 9156-9158.
63. Wong, L.S., J. Thirlway, and J. Micklefield, Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase. Journal of the American Chemical Society, 2008. 130(37): 12456-12464.
64. Hsieh, H.-J., P.-C. Liu, and W.-J. Liao, Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnology Letters, 2000. 22(18): 1459-1464.
65. Ispas, C., I. Sokolov, and S. Andreescu, Enzyme-functionalized mesoporous silica for bioanalytical applications. Analytical and Bioanalytical Chemistry, 2009. 393(2): 543-554.
66. Bernfeld, P. and J. Wan, Antigens and Enzymes Made Insoluble by Entrapping Them into Lattices of Synthetic Polymers. Science, 1963. 142(3593): 678-679.
67. Shen, Q., et al., Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochemistry, 2011. 46(8): 1565-1571.
68. Wang, Z.-G., et al., Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis B: Enzymatic, 2009. 56(4): 189-195.
69. Wen, H., et al., Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchimica Acta, 2011. 175(3-4): 283-289.
70. Kim, J., H. Jia, and P. Wang, Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances, 2006. 24(3): 296-308.
71. Halliwell, B.G., J. M. C., The definition and measurement of antioxidants in biological systems. Free Radical Biol. Med., 1995. 18(1): 125-126.
72. Valko, M.L., D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J., Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007. 39(1): 44-84.
73. BLOKHINA, O.V., E.; FAGERSTEDT, K. V., Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Ann. Bot., 2003. 91(2): 179-194.
74. Fita, I.R., M. G., The NADPH binding site on beef liver catalase. Proc. Natl. Acad. Sci., 1985. 82(6): 1604-1608.
75. Chance, B., EFFECT OF pH UPON THE REACTION KINETICS OF THE ENZYME-SUBSTRATE COMPOUNDS OF CATALASE. . J. Biol. Chem. , 1952. 194(2): 471-481.
76. Sumner, J.B., The Isolation and Crystallization of the Enzyme Urease. Preliminary Paper J. Biol. Chem., 1962. 69: 435-441.
77. Mobley HL, H.R., Microbial ureases: significance, regulation, and molecular characterization. Microbiological reviews, 1989. 53(1185-108).
78. Agrawal A, G.A., Chandra M, Koowar S Role of Helicobacter pylori infection in the pathogenesis of minimal hepatic encephalopathy and effect of its eradication. Indian Journal of Gastroenterology, 2011. 30(1): 29-32.
79. F.-K. Shieh, S.-C.W., C.-I. Yen, C.-C. Wu, S. Dutta, L.-Y. Chou, J. V. Morabito, P. Hu, M.-H. Hsu, Kevin C.-W. Wu* and C.-K. Tsung*, Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de novo Approach: Size-Selective Sheltering of Catalase in Metal-Organic Framework Microcrystals. J. Am. Chem. Soc. , 2015. 137(13): 4276–4279.
80. B. J. Bennion, V.D., The molecular basis for the chemical denaturation of proteins by urea. Proc Natl Acad Sci U S A., 2003 100(9): 5142–5147.
81. Jauncey, G.E.M., The Scattering of X-Rays and Bragg's Law. Proc. Natl. Acad. Sci., 1924. 10(2): 57-60.
82. Sing, K.S.W.E., D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Vibrational Spectroscopy, 1985. 57(4): 17.
83. Brunauer, S.E., P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 1938. 60(2): 309-319.
84. Nalwa, H.S., Handbook of Kuminescence, Display Materials and Device. American Scientific Publishers, 2003. Vol. 3.
85. S. Shionoya, W.M.Y., Phosphor Handbook. CRC Press: Boca Raton, FL, USA. 1998.
86. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976. 72(1–2): 248-254.
87. Jiang, Z.-Y., A.C.S. Woollard, and S.P. Wolff, Hydrogen peroxide production during experimental protein glycation. FEBS Letters, 1990. 268(1): 69-71.
88. Ou, P. and S.P. Wolff, A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. Journal of Biochemical and Biophysical Methods, 1996. 31(1–2): 59-67.
89. Nelson, D.P. and L.A. Kiesow, Enthalpy of decomposition of hydrogen peroxide by catalase at 25° C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical Biochemistry, 1972. 49(2): 474-478.
90. Han, Y.L., S. S.; Ying, J. Y. , Spherical Siliceous Mesocellular Foam Particles for High-Speed Size Exclusion Chromatography. Chem. Mater., 2007. 19(9): 2292–2298.
91. Štefanac, Z.T., M.; Raković-tresić, Z., Spectrophotometric Method of Assaying Urease Activity. Anal. Lett., 1969, 2, 197., 1969. 2(4): 197-210.
92. M. Ueda, H.K., T. Yoshida, N. Kamasawa, M. Osumi, A.Tanaka, A Effect of catalase-specific inhibitor 3-amino-1,2,4-triazole on yeast peroxisomal catalase in vivo. FEMS Microbiology Letters, 2003. 219(1): 93-98.
93. Dordick*, K.R.a.J.S., How Do Organic Solvents Affect Peroxidase Structure and Function? Biochemistry, 1992: 2588-2598