跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周宥勝
YU SHENG CHOU
論文名稱: 一維光子晶體等效非均向介值之研究
1-D photonic crystals anisotropic metamaterial
指導教授: 欒丕綱
Pi -Gang Luan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 64
中文關鍵詞: 非均向介質
外文關鍵詞: anisotropic metamaterial
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一維光子晶體(1-D photonic crystal)非均向性介質是金屬與介電質在某個方向上的週期排列。藉著調整金屬和介電質層的厚度比以及選用適當的介質參數,便可操縱光線的傳播行為。當構成此平板的單層厚度遠小於入射光波長時,一維光子晶體可近似成一塊均勻、介質參數為各向異性的單層平板;這便是長波極限下的近似。
    論文第一章為光子晶體的發展歷史。第二章包括了相關的電磁概念如傳遞矩陣法、色散關係等。在第三章中分別利用一維光子晶體作為全反射型偏振光分波器、雙折射型偏振光分波器、次波長聚焦平板透鏡的實例,去探討當波長/厚度比改變時,其相關特性改變的行為。經由第四章對資料的分析,得到了第五章的結論為:1.隨著波長/厚度比的增加,平板的特性會趨向均勻的等效單層平板;但表現出的變化行為並不相同。2.若把10%的誤差當作可容忍的,則波長/厚度比須大於18方可稱為長波極限。


    A 1-D photonic-crystal anisotropic medium is a structure consisting of an alternating arrangement of metallic and dielectric layers. By adjusting the thickness ratio of the two kinds of layers and choosing proper medium parameters, the propagating behavior of rays can be controlled. When the thickness of the medium layers is much smaller than the wavelength of incident light, the 1-D photonic crystal can be treated as a uniform anisotropic slab. Such kind of condition is defined as the long-wavelength limit.
    The first chapter is a brief review of the development of photonic crystals. We then introduce important electromagnetic concepts in the second chapter, like transfer matrix, dispersion relation…, etc. In the third chapter, examples of 1-D photonic-crystal anisotropic media including the polarizing beam splitters (PBS) based on total reflection and birefringence and a subwavelength imaging slab lens are investigated, and the modifications on their optical characteristics under the influence of changing the wavelength/thickness ratio are discussed. The conclusion of this thesis is obtained through analyzing the data in chapter four. They are: 1. With the increment of wavelength/thickness ratio, some special characteristics of the 1-D photonic crystal will approach that of the uniform anisotropic slab, but the changing tendencies of these optical properties are not the same for all cases. 2. If we neglect a discrepancy smaller than 10%, only when the wavelength/thickness ratio is larger than 18 can we define it as the long-wavelength limit.

    中文摘要..................................................I 英文摘要.................................................II 致謝.....................................................IV 目錄......................................................V 圖表目錄................................................VII 第一章 序論...............................................1 1-1 負折射與左手介質..................................1 1-2 左手介質的各向異性................................2 第二章 一維多層介質的理論分析.............................3 2-1 電磁理論.........................................3 2-2 傳遞矩陣法.......................................6 2-3 高斯光束與腰寬..................................10 2-4 色散關係.........................................12 2-5長波極限下的色散關係.............................14 2-6 Drude model………………………………………………...16 第三章 多層介質的數值模擬................................17 3-1 全反射型偏振光分波器(PBS).......................17 3-2 雙折射型偏振光分波器.............................21 3-3 平板透鏡.........................................28 3-4 介質順序對調的探討...............................37 第四章 資料分析..........................................43 4-1 PBS分析.........................................43 4-2 平板透鏡分析.....................................46 第五章 結論..............................................49 第六章 未來展望..........................................50 參考資料.................................................51

    [1] V. G. Veselago, “ The electrodynamics of substances with simultaneously negative values ofε and μ ,” Sov. Phys. Usp. 10, 509-514 (1968).
    [2] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “ Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett., 76, 4773-4776, (1996).
    [3] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “ Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech., 47, 2075-2084, (1999).
    [4] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “ Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., 84,4184-4187, (2000).
    [5] R. A. Shelby, D. R. Smith, and S. Schultz, “ Experimental verification of a negative index of refraction,” Science, 292, 77-79,(2001).
    [6] 欒丕綱, 陳啟昌, “光子晶體 ─ 從蝴蝶翅膀到奈米光子學,” 五南圖書出版股份有限公司, (2005).
    [7] D. R. Smith, and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405, (2003).
    [8] Hocheol Shin,Shanhui Fan,All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,APPLIED PHYSICS LETTERS 89, 151102 (2006)
    [9] Junming Zhao, Yan Chen, and Yijun Feng,Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure ,APPLIED PHYSICS LETTERS 92, 071114 (2008).
    [10] H. LUO,Z. REN,W. SHU,F. LI,Construct a polarizing beam splitter
    by an anisotropic metamaterial slab,Appl. Phys. B 87, 283–287 (2007)
    [11] Thomas Dumelow,* Jos? Alzamir Pereira da Costa, and Valder Nogueira Freire,Slab lenses from simple anisotropic media,PHYSICAL REVIEW B 72, 235115 (2005)

    QR CODE
    :::