跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳冠宏
KUAN-HUNG CHEN
論文名稱: 改良式模稜函數法應用於GNSS相對定位研究
Applying Modified Ambiguity Function Approach to GNSS Relative Positioning
指導教授: 吳究
Joz Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 台灣電離層模型改良式模稜函數法全球衛星導航系統
外文關鍵詞: MAFA, TWIM, GNSS
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以載波相位觀測量進行定位計算時,整數相位模稜與坐標參數的高相關特性,往往是不可避免的問題。一般解決途徑有兩種,整數解關聯法與模稜函數法,理論上估計與消去整數相位模稜會有相同的結果。
    GLONASS衛星系統現已穩定運行,且提供全世界免費服務,目前已是最有潛力與GPS進行整合的新興導航衛星系統。其FDMA訊號特性,使得求解方式有別於CDMA系統,以致兩系統間整合更是深具挑戰。
    本論文即在探討以改良式模稜函數法,在保有相位模稜的整數特性狀態下,直接對坐標分量進行解算。本實驗以GLONASS與GPS衛星系統為對象,以基線長度、衛星構形與電離層模型TWIM的改正成效等進行討論。實驗結果可以發現在台灣地區目前GPS定位成果較GLONASS為好。配合TWIM模型改正,此方法在55公里基線,GPS系統可達平面定位精度約7公分,高程方向約14公分。GLONASS系統平面定位精度約12公分,高程方向約23公分。


    For positioning purpose, using carrier-phase observations has to deal with the highly correlated parameters between ambiguity and geometry. Generally, there are two ways to solve the problem, integer-valued decorrelating algorithm and ambiguity function method. Theoretically, estimating and eliminating ambiguity are equivalent.
    GLONASS have been operated stably and provided free service worldwide. Currently, it is the most potential satellite system to integrate with GPS. Otherwise, the FDMA signal structure, which is different from CDMA, makes integrations full of challenge.
    The proposed method generates the solution of geometry in the condition of preserving integer-valued ambiguity. The experiments used GLONASS and GPS observations to compare with different baseline lengths, satellite configurations and TWIM corrections in positioning results. The results show that GPS is more available than GLONASS in Taiwan region. With TWIM corrections, the GPS positioning differences is 7 cm in horizontal and 14 cm in vertical component. GLONASS positioning differences is 12 cm in horizontal and 23 cm in vertical component.

    目錄 IV 第一章 、緒論 1 1.1 文獻回顧 1 1.2 研究動機 3 1.3 論文架構 4 第二章 、理論基礎 5 2.1 GNSS系統架構 5 2.1.1 系統發展 5 2.1.2 坐標系統 6 2.1.3 時間系統 7 2.1.4 GPS/GLONASS 系統整合 8 2.2 GNSS衛星訊號與星曆資料 9 2.3 觀測方程式 12 2.3.1 虛擬距離觀測式 12 2.3.2 載波相位觀測式 13 2.4 大氣效應 16 2.4.1 對流層影響與模式 16 2.4.2 電離層影響與模式 17 2.4.3 臺灣自主電離層數值模型TWIM 17 2.5 二次差分模式與參數處理 18 第三章 、模稜函數法之應用 21 3.1 最小二乘平差模式 21 3.2 傳統模稜函數法 23 3.3 改良式模稜函數法 24 3.3.1 理論架構 24 3.3.2 層次式求解 27 3.4 統計檢定 28 3.4.1 卡方統計檢定 29 3.4.2 費雪統計檢定 30 3.5 方差分量估計 30 第四章 、實驗成果與分析 32 4.1 實驗資料背景 32 4.2 實驗處理流程 33 4.3 實驗成果與分析 34 4.3.1 基線SPP4–SPP5 (22.2 m) 35 4.3.2 基線SPP4–DAJZ (9.68 km) 40 4.3.3 基線SPP4–HOLN (56.5 km) 48 第五章 、結論與展望 55 5.1 結論 55 5.2 展望 57 參考文獻 58

    林修國,1997。相位模稜求定與時鐘偏差估計應用與衛星相對定位姿態求解,博士論文,國立中央大學大氣物理研究所,中壢。
    孫翊騰,2010。適用於電離層高活動期間之現代化GPS長基線計算方法,碩士論文,國立成功大學測量及空間資訊學系碩博士班,台南。
    黃昭銘,2001。消去GPS相位模稜OTF相對定位之研究。碩士論文,國立中央大學土木工程研究所,中壢。
    黃俊穎,2009。運用臺灣自主電離層數值模式研究電離層赤道異常現象,碩士論文,國立中央大學太空科學研究所,中壢。
    游豐吉,1999。應用GPS載波相位於餘弦模式於衛星測量之研究,博士論文,國立中央大學土木工程研究所,中壢。
    葉添福,2003。最小二乘過濾法應用於動態GPS衛星定位平穩性之研究,碩士論文,國立中央大學土木工程研究所,中壢。
    謝吉修,2003。GPS 即時動態定位最佳化演算法比較研究,碩士論文,國立中央大學土木工程研究所,中壢。
    Boucher, C. and Altamimi, Z., 2001. ITRS, PZ-90 and WGS 84: current realizations and the related transformation parameters. Journal of Geodesy, Vol. 75, No. 11, pp. 613–619. doi:10.1007/s001900100208
    Baselga, S., 2010. Global optimization applied to GPS positioning by ambiguity functions. Measurement Science and Technology, Vol. 21, No. 12, doi: 10.1088/0957-0233/21/12/125102
    Cai, C. and Gao, Y., 2007. Precise point positioning using combined GPS and GLONASS observations. Journal of Global Positioning Systems, Vol. 6, No. 1, pp. 13–22. doi:10.5081/jgps.6.1.13
    Cellmer, S., Wielgosz, P., and Rzepecka, Z., 2010. Modified ambiguity function approach for GPS carrier phase positioning. Journal of Geodesy, Vol. 84, No. 4, pp. 267–275. doi:10.1007/s00190-009-0364-8
    Crocetto, N., Gatti, M., and Russo, P., 2000. Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups. Journal of Geodesy, Vol. 74, No. 6, pp. 447–457. doi:10.1007/s001900000109
    Goad, C. C. and Yang, M., 1997. A new approach to precision airborne GPS positioning for photogrammetry. Photogrammetric Engineering & Remote Sensing, Vol. 63, No. 9, pp. 1067–1077.
    Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., 2008. GNSS–Global Navigation Satellite Systems, 5th edn., Springer, New York .
    Horemuž, M. and Sjoberg, L. E., 2002. Rapid GPS ambiguity resolution for short and long baselines. Journal of Geodesy, Vol. 76, No. 6–7, pp. 381–91. doi:10.1007/s00190-002-0259-4
    Kuang, D., Schutz, B. E., and Watkins, M. M., 1996. On the structure of geometric positioning information in GPS measurements. Journal of Geodesy. Vol. 71, No. 1, pp. 35–43. doi:10.1007/s001900050073
    Leick, A., 1998. Aspects of GLONASS carrier-phase differencing. GPS Solutions, Vol. 2, No.1, pp. 36–41. doi:10.1007/PL00000025
    Leick, A., 2004. GPS Satellite Surveying, 3rd edn., John Wiley & Sons, Inc., Hoboken.
    Mohamed, A. H. and Schwarz, K. P., 1998. A simple and economical algorithm for GPS ambiguity resolution on the fly using a whitening filter. Navigation, Vol. 45, No. 3, pp. 221–231.
    Misra, P.N., Abbot, R.I., and Gaposhkin, E. M., 1996. Transformation between WGS84 and PZ-90. Proceedings of ION GPS-96, Kansas City, Missouri, September 17–20.
    Pratt, M., Burke, B., and Misra, P., 1997. Single-Epoch integer ambiguity resolution with GPS-GLONASS L1-L2 carrier phase measurements. Proceedings of ION, The Institute of Navigation, pp. 1737–1746.
    Remondi, B.W., 1991. Pseudo-kinematic GPS results using the ambiguity function method. Navigation, Vol. 38, No. 1, pp. 17–36.
    Saastamoinen, J., 1973. Contribution to the theory of atmospheric Refraction. Bulletin Geodesique, Vol. 107, No. 1, pp. 13–34 doi:10.1007/BF02521844
    Teunissen, P. J. G., 1995. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, Vol. 70, No. 1–2, pp. 65–82. doi:10.1007/BF00863419
    Teunissen, P. J. G., De Jonge, P. J., and Tiberius, C. C. J. M., 1997. Performance of the LAMBDA Method for Fast GPS Ambiguity Resolution. Navigation ,Vol. 44, No. 3, pp. 373–383.
    Tsai, L. C., Liu, C. H., Hsiao, T. Y., and Huang, J. Y., 2009. A near real-time phenomenological model of ionospheric electron density based on GPS radio occultation data. Radio Science, 44, RS5002, pp. 1–10. doi:10.1029/2009RS004154
    Wang, J., Stewart, M. P., and Tsakiri, M., 1998. A discrimination test procedure for ambiguity resolution on-the-fly. Journal of Geodesy, Vol. 72, No. 11, pp. 644–653. doi:10.1007/s001900050204
    Wang, J., Rizos, C., Stewart, M. P., and Leick, A., 2001. GPS and GLONASS integration: modeling and ambiguity resolution issues. GPS Solutions, Vol. 5, No.1, pp. 55–64. doi:10.1007/s001900100208
    Wu, J. and Hsieh, C. H., 2008. GPS on-the-fly medium-length positioning by an estimation of the measurement variance. Journal of the Chinese Institute of Engineers, Vol. 31, No. 3, 459–468. doi:10.1080/02533839.2008.9671400
    Wu, J. and Hsieh, C. H., 2010. Statistical modeling for mitigation of GPS multipath delays from day-to-day range measurements. Journal of Geodesy, Vol. 84, No. 4, 223–275. doi:10.1007/s00190-009-0358-6
    Xu, P., 2001. Random simulation and GPS decorrelation, Journal of Geodesy, Vol. 75, No. 7–8, pp. 408–423. doi:10.1007/s001900100192
    Zinoviev, A. E., 2005. Using GLONASS in combined GNSS receivers: current status, Proceedings of ION GNSS, Long Beach, CA, September 13–16.

    QR CODE
    :::