| 研究生: |
林家煒 Chia-wei Lin |
|---|---|
| 論文名稱: |
探討以混合菌固態發酵生產酵素並用於分解稻桿以生產衣康酸之研究 |
| 指導教授: |
徐敬衡
Chin-Hang Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 衣康酸 、稻桿 、纖維酵素 、水解 、固態發酵 |
| 外文關鍵詞: | itaconic acid, rice straw, cellulase, hydrolysis, solid-state fermentation |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
衣康酸(Itaconic acid)為一種用途廣泛的化學物,常被作為單體應用於製造塑膠、樹脂及橡膠等製品,也常被作為添加劑用於除草劑、乳化劑及高分子螯合劑等,是一種應用價值高並且具有發展潛力的一種化學物質。但目前的生產流程陷入瓶頸,原因是作為原料的葡萄糖成本過高,限制了衣康酸的經濟價值發展,因此若能找尋到較為便宜的原料以生產衣康酸,勢必可以解決這個問題,使衣康酸的經濟價值提高,能夠被更進一步的廣泛利用。
台灣早期為一個農業為主的國家,水道為台灣的第一大宗作物,每年約產生300萬噸的廢棄稻稈,若能利用這些屬於木質纖維材料的廢棄物—稻稈,並使用菌種生產脂纖維酵素做分解,將之做為原料生產衣康酸,則可以大幅降低衣康酸的生產成本,達到節省成本的目的。
本研究即是,利用黃豆加鹼處理過後之稻稈為原料,分別培養接種Aspergillus niger及Trichoderma ressei進行固態發酵,結束後將發酵殘餘物以適當比例做混合,添加檸檬酸緩衝溶液進行萃取,可得到三種纖維水解酵素之最高酵素濃度為3.88、3.95及4.11 U/ml,並發現使用稻稈作為誘導劑,可提升月46%的酵素產量。
接下來,將所得固液混合物,不經過繁瑣的過濾、濃縮等步驟,直接於攝氏50度下進行水解反應,可得最高的還原醣濃度為25.16 g/L。並發現酵素濃度高於1.3 U/ml時,可大幅提升水解效果。最後,將所得醣類進行衣康酸發酵,可得最高之衣康酸濃度為2.89g/L,轉化率為 23.1%。
Biotechnologically produced itaconic acid (IA) is a promising organic acid with a wide range of applications. But the cost problem of the raw material limited its capability of newer and wider applications.
In this study, agricultural waste—straws were hydrolyzed and used to replace the relatively expensive glucose or molasses in IA production. Solid-state fermentation was carried out with Trichoderma ressei Rut C-30 and Aspergillus niger BCRC 31130 separated-cultured at 28°C. 7.5ml/g sub of 50mM citric acid buffer solution were used to extract enzyme from SSF residual. The crude enzyme without any purification and concentration with the highest enzyme activity of exoglucanase, endoglucanase and β-glucosidase was 3.88, 3.95 and 4.11 U/ml, respectively. Using straws as precursor could increase 46% of the enzyme yield. Hydrolysis was carried out at 50°C for 72h to get the highest cumulative sugar concentration of 25.16 g/L and the decomposition ratio of 88.1%. Additionally, we found enzyme activity of 1.3 U/ml for three kinds of cellulases was needed to promote the decomposition ratio dramatically. IA fermentation was carried out in a 2-L airlift fermenter with the sugar gain from hydrolysis and obtained the highest IA concentration of 2.89g/L.
The results showed the feasibility of using straws as a replacement of molasses or glucose to decrease the cost of IA production, and it’s a valuable and potential subject worth of putting effort in.
1. Taiz, L. and E. Zeiger, Cell walls: structure, biogenesis, and expansion. Plant Physiology. Sinauer Associates, Sunderland, MA, 1998: p. 409-443.
2. 廖偉修, 探討光品質對於Aspergillus terreus生產衣康酸之影響, in 化學工程與材料工程研究所. 2011, 國立中央大學.
3. Willke, T. and K.D. Vorlop, Biotechnological production of itaconic acid. Appl Microbiol Biotechnol, 2001. 56(3-4): p. 289-95.
4. Baup, S., Ueber eine neue Pyrogen-Citronensaure. U. S. W. Annalen, 1836. 19: p. 29-38.
5. Kinoshita, T., Beikoku Arupusu tōhaki. 1931. 4, 13, 213 p.
6. Roher, M., Kubicek, C., Products of primary metabolism. In:Rehm, H.J., Reed, G. (Eds.), Biotechnology. VCHmbH, Weinhelm,Germany, 1996: p. 364–379.
7. Werpy, T., Petersen, G, Results of screening for potential candidates fromsugars and synthesis gas. Top Value Added Chemicals from Biomass, 2004.
8. Klement, T. and J. Buchs, Itaconic acid--a biotechnological process in change. Bioresour Technol, 2013. 135: p. 422-31.
9. Yahiro, K., Takahama, T., Park, Y.S., Okabe, M., Breeding of Aspergillus terreus mutant TN-484 for itaconic acid production with high yield. J. Ferment. Bioeng, 1995. 79(5): p. 506-508.
10. Kuenz, A., Gallenmüller, Y., Willke, T., Vorlop, K.-D., Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl. Microbiol. Biotechnol, 2012. 96(5): p. 1209-1216.
11. Kobayashi, T., Production of itaconic acid from wood waste. Process Biochem, 1978. 13(5): p. 15-22.
12. Klement, T., Milker, S., Jäger, G., Grande, P., Domínguez de María, P., Büchs, J., Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb. Cell Factor, 2012. 11(1): p. 43.
13. Sieker, T., Duwe, A., Poth, S., Tippkötter, N., Ulber, R., Herstellung von Itaconsäure aus Buchenholz-Hydrolysaten. 2012: p. 14.–16.05.2012.
14. Bansal, N., et al., Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 2012. 32(7): p. 1341-6.
15. 黃伯傑, 探討以Aspergillus niger分解稻稈及Saccharomyces cerevisiae生產生質酒精之研究, in 化學工程與材料工程研究所. 2013, 國立中央大學 桃園縣.
16. McMillan, J.D., Enyzmatic Conversion of Biomass for Fuels Production. Vol. 566. 1994, Washington: American Chemical Society.
17. Tanaka, M., R. Matsuno, and A.O. Converse, N-Butylamine and acid-steam explosion pretreatments of rice straw and hardwood: Effects on substrate structure and enzymatic hydrolysis. Enzyme and Microbial Technology, 1990. 12(3): p. 190-195.
18. Sun, Y. and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 2002. 83(1): p. 1-11.
19. Sánchez, C., Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 2009. 27(2): p. 185-194.
20. Kim, J.Y., S.H. Hur, and J.H. Hong, Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol Lett, 2005. 27(5): p. 313-6.
21. Lee, B.H., et al., Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme and Microbial Technology, 2010. 46(1): p. 38-42.
22. Bisaria, V.S., S. Mishra, and D.E. Eveleigh, Regulatory Aspects of Cellulase Biosynthesis and Secretion. Critical Reviews in Biotechnology, 1989. 9(2): p. 61-103.
23. Sohail, M., et al., Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N Biotechnol, 2009. 25(6): p. 437-41.
24. Sukumaran, R.K., et al., Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy, 2009. 34(2): p. 421-424.
25. Béguin, P., et al., Cloning of Cellulase Genes. Critical Reviews in Biotechnology, 1987. 6(2): p. 129-162.
26. Uusitalo, J.M., et al., Enzyme production by recombinant Trichoderma reesei strains. Journal of Biotechnology, 1991. 17(1): p. 35-49.
27. Bollók, M. and K. Réczey, Cellulase enzyme production by various fungal strains on different carbon sources. Acta Alimentaria, 2000. 29(2): p. 154-168.
28. Tamás Juhász*, K.K., Zsolt Szengyel and Kati Réczey, Production of β-Glucosidase in Mixed Culture of Aspergillus niger BKMF 1305 and Trichoderma reesei RUT C30. Food Technol. Biotechnol., 2003. 41(1): p. 49-53.
29. 林文仕, 利用Bacillus sp. 分解纖維素進行兩階段式發酵生產特用化學品, in 化學工程與材料工程研究所. 2012, 國立中央大學: 桃園縣. p. 75.
30. Schlochtermeier, A., et al., The gene encoding the cellulase (Avicelase) Cell from Streptomyces reticuli and analysis of protein domains. Molecular Microbiology, 1992. 6(23): p. 3611-3621.
31. Alexander, M., Introduction to Soil Microbiology. 1977, John Wiley & Sons: New York.
32. Schinner, F. and W.v. Mersi, Xylanase-,CM-cellulase- and Invertase Actvity in Soil: an Improved Method. Soil Biol. Biochem, 1990. 22(4): p. 511-515.
33. Sattler, K., Schimmelpilze – Lebensweise Nutzen Schaden Bekämpfung. Berlin: Springer-Verlag, 1986, 230S., 69 Abb., 55 Tab., 58 DM. Acta Biotechnologica, 1987. 7(5): p. 446-446.
34. Schuster, E., et al., On the safety of Aspergillus niger--a review. Appl Microbiol Biotechnol, 2002. 59(4-5): p. 426-35.
35. S. Bhargav, B.P.P., M. Ali, and S. Javed, Solid-state Fermentation: An Overview. Chem. Biochem. Eng. Q., 2008. 22(1): p. 49-70.
36. Sato, K. and S. Sudo, Small-scale solid-state fermentations. Manual of industrial microbiology and biotechnology, 1999. 2: p. 61-63.
37. Lai, L.-S.T., C.-S. Hung, and C.-C. Lo, Effects of lactose and glucose on production of itaconic acid and lovastatin by< i> Aspergillus terreus</i> ATCC 20542. Journal of bioscience and bioengineering, 2007. 104(1): p. 9-13.
38. Brijwani, K., H.S. Oberoi, and P.V. Vadlani, Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry, 2010. 45(1): p. 120-128.
39. Hägerdal, B., J.D. Ferchak, and E.K. Pye, Saccharification of cellolulose by the cellulolytic enzyme system of Thermonospora sp. I. Stability of cellulolytic activities with respect to time, temperature, and pH. Biotechnology and Bioengineering, 1980. 22(8): p. 1515-1526.
40. Miller, G.L., Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 1959. 31(3): p. 426-428.
41. Ghose, T.K., Measurement of Cellulase Activities. Pure & Appl. Chem., 1987. 59(2): p. 257-268.
42. Cunha, F.M., et al., Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour Technol, 2012. 112: p. 270-4.
43. Ghose, T.K., Continuous enzymatic saccharification of cellulose with culture filtrates of trichoderma viride QM 6a. Biotechnology and Bioengineering, 1969. 11(2): p. 239-261.