跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何榮文
Jung-Wen Ho
論文名稱: 圓錐平板型生物反應器週期性流場研究
Periodic flow in a cone-plate Bioreactor
指導教授: 鍾志昂
C.A. Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 59
中文關鍵詞: 剪應力生物反應器圓錐平板型週期性流動
外文關鍵詞: shear stress, bioreactor, cone-plate, Periodic flow
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物反應器是提供細胞、組織在體外培養時所需要的環境,藉由生物反應器所提供不同的機械刺激來進行細胞組織的培養,而剪切力為其中的一項機械刺激,在能提供剪切力的生物反應器中,圓錐平板型生物反應器已為廣泛使用。
    本篇論文是使用圓錐平板型生物反應器,來探討主流場下的剪切力,在此不同以往研究;圓錐旋轉不再是單向性旋轉,而是具有週期性變化的旋轉,藉此更能接近血液脈動的情形。此外本篇也藉由改變不同的圓錐角來探討邊界效應對剪切力的影響。在本文中,主要是採用數值方法來分析,並藉由解析方法來驗證其正確性。


    The flow between a shallow cone and a stationary plate has been drawing many research efforts in the designing of shear-loading bioreactors, but the concept with a cone rotating periodically is first proposed in this paper. How the stress in the plate being influenced by the periodically rotating cone periodically and the cone angle variation is investigated.
    In this paper we find two parameter which can influence the stress in the plate; one is the parameter which is related to the frequency of the cone repeatedly and the other is the parameter which is related to cone angle.

    摘要 Ⅰ 目錄 Ⅱ 圖目錄 Ⅳ 符號說明 Ⅵ 第一章 前言 1 1.1 研究背景   1 1.2 研究動機 4 第二章 數學模式 5 2.1 物理系統 5 2.2 統御方程式的建立 5 2.2 無因次化統御方程式的建立 6 第三章 數值方法 10 3.1 速度的運算 10 3.2 剪切力的運算 15 3.3 扭矩的運算 16 第四章 解析方法 18 4.1外部解 18 4.2內部解 20 4.3一般解 24 第五章 結果與討論 26 5.1速度的分析 27 5.2剪切力的分析 31 5.3扭矩的分析 33 第六章 結論 34

    1. Brown, T. D., 2000, Techniques for mechanical stimulation of cells in virto: a review. J. Biomech. 33, 3-14.
    2. Bussolari, S. R., Dewey, C. F. & Gimbrone, M. A.,1982, Apparatus for subjectingliving cells to fluid shear stress. Rev. Sci. Instrum. 53(12), 1851-1854.
    3. Cox, D. B., 1962, Radial flow in the cone-plate viscometer. Nature, 193,670.
    4. Dewey, C. F., Bussolari, S. R., Gimbrone, M. A.& Davies, P. F., 1981, The dynamic response of vascular endothelial cells to fluid shear stres. J. Biomech. Eng. 103, 177-185.
    5. Einav S, Dewey C. F. & Hartenbaum H, 1994 , C-Plate apparents:a compact system for studying well-characterized turbulent flow fields, Exp in Fluids. 16,196-202
    6. Einav S & Grad Y 1999, Spectral and instantaneous flow field characteristics of the laminar to turbulent transition in a cone and plate apparatus, Exp in Fluids, 28, 336-343
    7. Hochleitner B. W. et al. 2000, Fluid Shear Stress Induces Heat Shock Protein 60 Expression in Endothelial Cells In Vitro and In Vivo, Arterioscler Thromb Vasc Biol. 20, 617-623
    8. John C. T.,Dale A. A. & Richard H. P. Computational fluid mechanics and heat transfer, second edition. Taylor & Francis, 1997
    9. Mazumdar J. N., Biofluid Mechanics
    10. Michael C. Wendl, 2001, Mathematical analysis of coaxial disk cellular shear loading devices. American institute of physics. 72, 4212-4217
    11. McKinley, G. H., Oztekin, A., Byars, J. A. & Brown, R. A., 1995, Self-similar instabilities in elastic flows between a cone and a plate. J. Fluid Mech. 285, 123-164.
    12. Miller, C. E. & Hoppmann, W. H., 1963 Velocity field induced in a liquid by a rotating cone. In Proc. 4th intl congr. On Rheology,Part 2, pp. 619-635. Interscience.
    13. Mooney, M. & Ewart, R. H.,1934, The conicylindrical viscometer. Physis, 5, 350-354.
    14. Olagunju, D. O. & Cook, L. P.,1993, Secondary flow in cone and plate flow of an Oldroyd-B fluid. J. Non-Newtonian Fluid Mech. 46, 29-47.
    15. Pelech, I. & Shapiro, A. H., 1967, Flexible disk rotating on a gas film next to a wall. Trans. ASME E: J. Appl. Mech. 31, 577-584
    16. Sdougos, H. P., Bussolari, S. R. & Dewey, C. F., 1984, Secondary flow and turbulence in a cone-and-plate device. J. Fluid Mech. 138, 379-404.
    17. Walters, K. & Waters, N. D., 1966, Polymer systems, deformation
    and flow. In Proc. Brit. Soc. Rheol. (ed. R. E. Wetton & R. W.
    Whorlow). Macmmillan
    18. White F. M., Viscous fluid flow, second edition. McGraw-Hill, Inc.1991

    QR CODE
    :::