| 研究生: |
呂昕旻 Xin-Min Lu |
|---|---|
| 論文名稱: |
椎間盤材料模型對腰椎生物力學響應之影響 |
| 指導教授: |
黃俊仁
Jiun-Ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 腰椎 、多孔隙彈性體 、彈性體 、椎板間穩定器 、韌帶預力 、生物力學響應 |
| 外文關鍵詞: | Lumbar Spine, Poroelastic, Linear Elastic, Interlamina Device, Ligament Pretension, Biomechanical Response |
| 相關次數: | 點閱:27 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立椎間盤為多孔隙彈性體的腰椎有限元素模型,探討腰椎的生物力學影響應進,並與椎間盤為彈性體性質的結果進行比較。建構的有限元素模型為L3–L5節段,模擬健康與退化兩種腰椎狀態,搭配分層纖維環結構與0.25 MPa內壓以提升模型的真實性與剛性設定之合理性。此外探討腰椎植入椎板間穩定器(IntraSPINE)或新型椎板間穩定器(SLDD)後之生物力學響應,設計三種韌帶預力條件以模擬植入物撐起距離的臨床差異,以評估植入物的穩定性與對鄰近節段的影響。
研究結果顯示,相較於彈性體模型,多孔隙彈性體在模擬中能更清楚呈現退化狀態下髓核內部壓力下降與纖維環應力上升的現象,並能反映鄰近節段產生代償性活動度增加的趨勢,特別在旋轉與側彎等負載下,其活動度與應力差異更為明顯。此外,多孔隙彈性體在各種運動模式下皆能有效模擬椎間盤的吸震與能量分散機制,其所呈現之應力分佈與變形行為相較於彈性體更具有分佈均勻、變形穩定的特性,特別適合應用於退化狀態下椎間盤行為之分析。
在植入物方面,模擬結果顯示,無論在健康或退化模型中,韌帶預力皆顯著影響椎間盤應力分布。植入物可分擔部分原本集中於椎間盤的應力,轉移至自身結構,使椎間盤即使應力略升,亦可由纖維環支撐吸收而獲得緩解。雖先前研究指出SLDD效能優於IntraSPINE,但在本研究採用的多孔隙超彈性體材料模擬中,兩者皆展現良好支撐與應力分散效果。本研究的限制包括未納入肌肉受力、韌帶以簡化彈簧元素模擬、椎骨材料性質未採非等向性設定、僅使用單向流固耦合方式,以及未考慮結構對流體的反饋影響。
In this study, a finite element model of the lumbar spine (L3–L5) was developed with the intervertebral disc represented as a poroelastic to investigate the biomechanical behavior of the lumbar spine. The results were compared with those obtained from a model in which the disc was defined as a Linear Elastic. Both healthy and degenerated lumbar conditions were simulated, and a layered annulus fibrosus structure with an internal pressure of 0.25 MPa was applied to enhance the physiological accuracy and mechanical realism of the model. Additionally, the biomechanical responses after implantation of an interlaminar stabilization device (IntraSPINE) or a novel device (SLDD) were examined. Three ligament pretension conditions were designed to simulate clinical differences in the distraction force applied by implants, in order to evaluate their stabilizing effects and influence on adjacent segments.
The results showed that, compared to the elastic model, the poroelastic model more clearly reflected the reduction in nucleus pulposus pressure and the increase in annulus fibrosus stress under degenerative conditions. It also better captured the compensatory increase in motion of adjacent segments. These differences were particularly pronounced under rotational and lateral bending loads. Furthermore, the poroelastic model more effectively simulated the shock absorption and energy dissipation mechanisms of the disc under various motion scenarios, with stress distributions and deformation patterns that more closely resembled physiological conditions. This makes it especially suitable for modeling degenerated intervertebral discs.
Regarding the implants, the simulations indicated that ligament pretension had a significant influence on stress distribution in both healthy and degenerated models. The implants helped redistribute some of the disc loading onto the device itself, thereby alleviating stress concentrations. Even when slight increases in disc stress occurred, they could be mitigated by the structural support of the annulus fibrosus. Although previous studies have reported superior performance of the SLDD compared to IntraSPINE, both devices demonstrated good stability and stress-relief capabilities in the poro-hyperelastic disc model used in this study. Limitations of this study include the exclusion of muscle forces, simplified ligament representation using spring elements, isotropic material assumptions for vertebrae, the use of one-way fluid–structure interaction (FSI), and the lack of feedback from structural deformation to fluid behavior.
1. Lee , C. K., Accelerated Degeneration of the Segment Adjacent to a Lumbar Fusion. Spine (Phila Pa 1976). Vol. 13, pp. 375-377, 1988.
2. Ruiz, C., Noailly, J., Lacroix, D., Material Property Discontinuities in Intervertebral Disc Porohyperelastic Finite Element Models Generate Numerical Instabilities due to Volumetric Strain Variations. J Mech Behav Biomed Mater. Vol. 26, pp. 1–10, 2013.
3. Netter, F. H., Atlas of Human Anatomy. 5th ed. Saunders/Elsevier, 2010. ISBN: 978-1416059516.
4. 洪志毅,不同的脊椎植入物對腰椎椎體與小面關節的影響,國立陽明大學醫學工程研究所,碩士論文,2006。
5. Raj, P. P., Intervertebral Disc: Anatomy‑Physiology‑Pathophysiology‑Treatment.
Pain Practice. Vol. 8, Iss. 1, pp. 18–44, 2008.
6. Guo, Z., Shi, X., Peng, X., Caner, F., Fibre–Matrix Interaction in The Human Annulus Fibrosus. J Mech Behav Biomed Mater. Vol. 5, pp. 193–205, 2012.
7. 小小整理網站 SMALLCOLLATION., Available from: https://smallcollation.blogspot.com/2013/04/spinal-ligament.html.
8. 脊椎結構-韌帶Ligament. 2011; Available from: https://blog.xuite.net/christine885678287/twblog/173584161#
9. 周鴻燦,腰椎管狹窄症常見問題,2020, Available from: https://asiamedicalspecialists.hk/tc/health-info/14/%E8%85%B0%E6%A4%8E%E7%AE%A1%E7%8B%B9%E7%AA%84%E7%97%87%E5%B8%B8%E8%A6%8B%E5%95%8F%E9%A1%8C.
10. Derrouiche, A., Feki, F., Zaïri, F., Taktak, R., et al., How Pre‑strain Affects the Chemo‑torsional Response of the Intervertebral Disc. Clin Biomech. Vol. 80, Original Number. 105020, 2020.
11. Park, B. J., Gold, C. J., Christianson, D., DeVries Watson, N. A., et al., Biomechanical Assessment of the Effect of Sublaminar Band Tensioning on Lumbar Motion. J Neurosurg Spine. Vol. 37, pp. 836‑842, 2022.
12. Tan, J. S., Uppuganti, S., Cumulative Multiple Freeze-Thaw Cycles and Testing Does Not Affect Subsequent Within-Day Variation in Intervertebral Flexibility of Human Cadaveric Lumbosacral Spine. Spine (Phila Pa 1976). Vol. 37, pp. 1238‑1242, 2012.
13. Wang, W., C. Kong, F. Pan, W. Wang, et al., Influence of Sagittal Lumbopelvic Morphotypes on the Range of Motion of Human Lumbar Spine: An In Vitro Cadaveric Study. Bioengineering (Basel). Vol. 9, Original Number. 224, 2022.
14. Cook, D. J., Yeager, M. S., Cheng, B. C., Range of Motion of the Intact Lumbar Segment: A Multivariate Study of 42 lumbar spines. Int J Spine Surg. Vol. 9, Original Number. 5, 2015.
15. Busscher, I., van Dieën, J. H., Kingma, I., van der Veen, A. J., et al., Biomechanical Characteristics of Different Regions of the Human Spine: An In Vitro Study on Multilevel Spinal Segments. Spine. Vol. 34, pp. 2858–2864, 2009.
16. Kettler, A., Drumm, J., Heuer, F., Mack, C., et al., Can a Modified Interspinous Spacer Prevent Instability in Axial Rotation and Lateral Bending? A Biomechanical in Vitro Study Resulting in a New Idea. Clin Biomech. Vol. 23, pp. 242‑247, 2008.
17. ASTM F1717-21, Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model. 2021
18. Tian, H., Sun, Y., Zhao, J., Pong, B., Personalized 3D Printing of Artificial Vertebrae: A Predictive Bone Density Modeling Approach for Robotic Cutting Applications. Appl Sci. Vol. 20, Original Number. 9479, 2024.
19. Lu, T., Lu, T., Interlaminar Stabilization Offers Greater Biomechanical Advantage Compared to Interspinous Stabilization After Lumbar Decompression: A Finite Element Analysis. Journal of Orthopaedic Surgery and Research. Vol. 15, Original Number. 291, 2020.
20. Lo, H. J., Chen, C. S., Chen, H. M., Yang, S. W., et al., Application of An Interspinous Process Device After Minimally Invasive Lumbar Decompression Could Lead to Stress Redistribution at the Pars Interarticularis: A Finite Element Analysis. BMC Musculoskelet Disord. Vol. 20, Original Number. 213, 2019.
21. Wiczenbach, T., Pachocki, Ł., Daszkiewicz, K., Łuczkiewicz, P., Development and Validation of Lumbar Spine Finite Element Model. PeerJ. Vol. 11, Original Number. e15805, 2023.
22. Komeili, A., Rasoulian, A., Moghaddam, F., El-Rich, M., et al., The Importance of Intervertebral Disc Material Model on The Prediction of Mechanical Function of The Cervical Spine. BMC Musculoskelet Disord. Vol. 22, Original Number. 324, 2021.
23. Du, C. F., Yang, N., Guo, J. C., Huang, Y. P., et al., Biomechanical Response of Lumbar Facet Joints Under Follower Preload: A Finite Element Study. BMC Musculoskelet Disord. Vol. 17, Original Number. 126, 2016.
24. Cai, X. Y., Sun, M. S., Huang, Y. P., Liu, Z. X., et al., Biomechanical Effect of L4–L5 Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study. Orthop Surg. Vol. 12, pp. 917–930, 2020.
25. Hassan, C. R., Lee, W., Komatsu, D. E., Qin, Y. X., et al., Evaluation of Nucleus Pulposus Fluid Velocity and Pressure Alteration Induced by Cartilage Endplate Sclerosis Using a Poro-Elastic Finite Element Analysis. Biomech Model Mechanobiol. Vol. 20, pp. 281–291, 2021.
26. Allam, A. F. A., Allam, M. F. A., Koptan, W., Abotakis, T. A. A., Pedicle Screw/Sublaminar Hook Fixation Versus Pedicle Screw/Infraspinous Wire Fixation for Spondylolysis Repair: A Retrospective Comparative Study With Multislice Computed Tomography Assessment. Orthopaedic Surgery Department. Vol. 41, pp. 148-155, 2022.
27. Wang, D. F., Zhu, W. G., Wang, W., Kong, C., et al., The Effect of Interlaminar Coflex Stabilization in The Topping‑Off Procedure on Local and Global Spinal Sagittal Alignment. BMC Musculoskelet Disord. Vol. 24, pp. 116, 2023.
28. Feng, S., Fan, Z., Ni, J., Yang, Y. et al., New Combination of IntraSPINE Device and Posterior Lumbar Interbody Fusion for Rare Skipped‑Level Lumbar Disc Herniation: A Case Report and Literature Review. J Int Med Res. Vol. 48, pp. 1-9, 2020.
29. Yeh, K. L., Wu, S. H., Wu, S. S., et al., Application of The IntraSPINE® Interlaminar Device in Patients with Osteoporosis and Spinal Stenosis: Two Case Reports. Int Med Res. Vol. 49, pp. 1-10, 2021.
30. Cavalcanti, C., Correia, H., Castro, A., Alves, J. L., Constituive Modelling of the Annulus Fibrosus: Numerical Implementation and Numerical Analysis. Mechanical Engineering Department. Vol. 23, pp. 31–36, 2025.
31. Nerurkar, N. L., Elliott, D. M., Mauck, R. L., et al., Mechanical Design Criteria for Intervertebral Disc Tissue Engineering. J Biomech. Vol. 43, pp. 1017–1030, 2010.
32. Tavakoli, J., Tipper, J. L., Detailed Mechanical Characterization of The Transition Zone: New Insight into The Integration Between The Annulus and Nucleus of The Intervertebral Disc. Acta Biomater. Vol. 143, pp. 87-99, 2022.
33. Brekelmans, W. A., Poort, H. W., Slooff, T. J., A New Method to Analyse The Mechanical Behaviour of Skeletal Parts. Acta Orthop Scand. Vol. 43, pp. 301–317, 1972.
34. Kurowski, P., Kubo, A., The Relationship of Degeneration of The Intervertebral Disc to Mechanical Loading Condi Tions on Lumbar Vertebrae. Spine (Phila Pa 1976). Vol. 11, pp. 726–731, 1986.
35. Rohlmann, A., Zander, T., Schmidt, H., Wilke, H. J., et al. Analysis of The Influence of Disc Degeneration on The Mechanical Behaviour of a Lumbar Motion Segment Using The Finite Element Method. J Biomech. Vol. 39, pp. 2484–2490, 2006.
36. Sun, T., Wang, J., Liu, X., Huang, H., et al., Finite Element Models of Intervertebral Disc: Recent Advances and Prospects. Ann Med. Vol. 57, Original Number. 2453089, 2025.
37. Pezowicz, C., Analysis of Selected Mechanical Properties of Intervertebral Disc Annulus Fibrosus in Macro and Microscopic Scale. J Theoretical and Applied Mechanics. Vol. 48, pp. 917–932, 2010.
38. Ferguson, S.J., Ito, K., Nolte, L. P., Fluid Flow and Convective Transport of Solutes Within The Intervertebral Disc. J Biomech. Vol. 37, pp. 213-221, 2004.
39. Li, J., Zhang, X., Xu, W., Xi, Z., Reducing the Extent of Facetectomy May Decrease Morbidity in Failed Back Surgery Syndrome. BMC Musculoskelet Disord. Vol. 20, Original Number. 369, 2019.
40. Pollintine, P., Tunen, M. V., Luo, J., Brown, M. D., et al., Time-Dependent Compressive Deformation of The Ageing Spine: Relevance to Spinal Stenosis. Spine. 2010, Vol. 35, pp. 386–394, 2010.
41. Zhou, M., Lim, S., O’Connell, G. D., et al., A Robust Multiscale and Multiphasic Structure-Based Modeling Framework for the Intervertebral Disc. Front Bioeng Biotechnol. Vol. 9, Original Number. 685799, 2021.
42. Brown, T., Hansen, R. J., Yorra, A. J., Some Mechanical Tests on The Lumbosacral Spine with Particular Reference to The Invertebral Disc. J Bone Joint Surg Am. Vol. 39-A. pp. 1135-1164, 1957.
43. Galante, J. O., Tensile Properties of The Human Lumbar Annulus Fibrosus. Acta Orthop. Stand. Suppl. Vol. 100. pp. 1-91, 1967.
44. Belytschko, T., Kulak, R. F., Schultz, A. B., Galante, J. O., Finite Element Stress Analysis of an Intervertebral Disc. J Biomech. Vol. 7, pp. 277–285, 1974.
45. Wu, H. C., Yao, R. F., Mechanical Behavior of The Human Annulus Fibrosus. J Biomech. Vol. 1, pp. 1–7, 1976.
46. Shirazi‑Adl, A., Ahmed, A. M., Shrivastava, S. C., Mechanical Response of A Lumbar Motion Segment in Axial Torque Alone and Combined with Compression. Spine. Spine (Phila Pa 1976). Vol. 11, pp. 914–927, 1986.
47. Shen, H., Fogel, G. R., Zhu, J., Liao, Z., Biomechanical Analysis of Different Lumbar Interspinous Process Devices: A Finite Element Study. World Neurosurg. Vol. 127, pp. 1112–1119, 2019.
48. Shirazi Adl, A., Ahmed, A. M., Shrivastava, S.C. A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments. J Biomech. Vol. 19, pp. 331-350. 1986.
49. Faraji, R., Esfand Abadi, V.,S., Bostan Shirin, M., Hyperelastic Constitutive Model for Sheep Intervertebral Disc J Biomech. ICBME. 2020.
50. Aklonis, J. J., Introduction to Polymer Viscoelasticity, 1972.
ISBN-10:0471018600
51. R. Sanjeevi, et al., A Viscoelastic Model for The Mechanical Properties of Biological Materials. J Biomech. Vol. 15, pp. 415–472, 1982.
52. Furlong, D. R., Palazotto, A. N., et al., A Finite Element Analysis of the Influence of Surgical Herniation on the Viscoelastic Properties of the Intervertebral Disc. J Biomech. Vol. 16, pp. 785–795, 1983.
53. Natali, A., Meroi, E., et al., Nonlinear Analysis of Intervertebral Disk Under Dynamic Load. J Biomech Eng. Vol. 112, pp. 358–363, 1990.
54. Wang, J. L., Parnianpour, M., Shirazi-Adl, A., Engin, A. E., Development and Validation of Lumbar Spine Finite Element Model. Theor Appl Fract Mec. Vol. 28, pp. 81–93, 1997.
55. Laible, J.P., Pflaster, D, Simon, B. R., Krag, M. H., et al., A Dynamic Material Parameter Estimation Procedure for Soft Tissue Using a Poroelastic Finite Element Model. J Biomech Eng. Vol. 116, pp. 19–29, 1994.
56. Sato, K., Kikuchi, S., Yonezawa, T., In Vivo Intradiscal Pressure Measurement In Healthy Individuals And In Patients With Ongoing Back Problems. Spine. Vol. 24, pp. 2468–2474, 1999.
57. Adams, M. A., Freeman, B. J. C., Morrison, H. P., Nelson, I. W., et al., Mechanical Initiation Of Intervertebral Disc Degeneration. Spine. Vol. 25, pp. 1625–1636, 2000.
58. Wilke, H.-J., Neef, P., Hinz, B., Seidel, H., et al., Intradiscal Pressure Together With Anthropometric Data: A Data Set for the Validation of Models. Clin Biomech (Bristol, Avon). Vol. 16 Suppl 1, pp. S111–S126, 2001.
59. Guehring, T., Unglaub, F., Lorenz, H., Omlor, G., et al., Intradiscal Pressure Measurements in Normal Discs, Compressed Discs and Compressed Discs Treated With Axial Posterior Disc Distraction: An Experimental Study on the Rabbit Lumbar Spine Model. Eur Spine J. Vol. 15, pp. 597–604, 2006.
60. Nikkhoo, M., Hsu, Y. C., Haghpanahi, M., Parnianpour, M., A Meta‑Model Analysis of a Finite Element Simulation for Defining Poroelastic Properties of Intervertebral Discs. Proc Inst Mech Eng H. Vol. 227, pp. 672–682, 2013.
61. Vergroesen, P. P. A., van der Veen, A. J., Emanuel, K. S., van Dieën, J. H., et al., The Poro‑Elastic Behaviour of the Intervertebral Disc: A New Perspective on Diurnal Fluid Flow. J Biomech. Vol. 49, pp. 857–863, 2016.
62. Lialios, D., Eguzkitza, B., Houzeaux, G., Casoni, E., et al., A Porohyperelastic Scheme Targeted at High‑Performance Computing Frameworks for the Simulation of the Intervertebral Disc. Comput Methods Programs Biomed. Vol. 250, Original Number. 108493, 2024.
63. Sun, T., Wang, J., Liu, X., Huang, H., et al., Finite Element Models of Intervertebral Disc: Recent Advances and Prospects. Ann Med. Vol. 57, Original Number. 2453089, 2025.
64. Malandrino, A., Jackson, A. R., Huyghe, J. M., Noailly, J., et al., Poroelastic Modeling of the Intervertebral Disc: A Path Toward Integrated Studies of Tissue Biophysics and Organ Degeneration. MRS Bulletin. Vol. 40, pp. 324–332, 2015.
65. Fan, Y., Zhou, S., Xie, T., Yu, Z., et al., Topping‑Off Surgery vs Posterior Lumbar Interbody Fusion for Degenerative Lumbar Disease: A Finite Element Analysis. J Orthop Surg Res. Vol. 14, Original Number. 476, 2019.
66. Cai, X.‑Y., Sun, M.‑S., Huang, Y.‑P., Liu, Z.‑X., et al., Biomechanical Effect of L4–L5 Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study. Orthop Surg. Vol. 12, pp. 1669–1677, 2020.
67. Wang, J. L., Parnianpour, M., Shirazi-Adl, A., Engin, A. E., Viscoelastic Finite-Element Analysis of a Lumbar Motion Segment in Combined Compression and Sagittal Flexion. Effect of Loading Rate. Spine. Vol. 25, pp. 310-318, 1976.
68. Nikkhoo, M., Lu, M.-L., Chen, W.-C., Fu, C.-J., et al. Biomechanical Investigation Between Rigid and Semirigid Posterolateral Fixation During Daily Activities: Geometrically Parametric Poroelastic Finite Element Analyses. Front Bioeng Biotechnol. Vol. 9, Original Number. 646079, 2021.
69. 甘立鳴,椎板間穩定器對於非骨融合手術初期生物力學影響,國立中央大學機械工程研究所,碩士論文,2023。
70. Teraguchi, M. Prevalence and Distribution of Intervertebral Disc Degeneration over the Entire Spine in a Population-Based Cohort: The Wakayama Spine Study. Osteoarthritis Cartilage. Vol. 22, pp. 104–110, 2014.
71. Battie, M. C., Videman, T., Parent, E. Lumbar Disc Degeneration: Epidemiology and Genetic Influences. Spine (Phila Pa 1976). Vol. 29, pp. 2679–2690, 2004.
72. Benneker, L. M., Heini, P. F., Anderson, S. E., Alini, M., et al. Correlation of Radiographic and MRI Parameters to Morphological and Biochemical Assessment of Intervertebral Disc Degeneration. Eur Spine J. Vol. 14, pp. 27–35, 2005.
73. Schmidt, H., Heuer, F., Simon, U., Kettler, A., et al. Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus. Clin Biomech (Bristol). Vol. 21, pp. 337–344, 2006.
74. Yang, B., O’Connell, G. D. Swelling of Fiber-Reinforced Soft Tissues Is Affected by Fiber Orientation, Fiber Stiffness, and Lamella Structure. J Mech Behav Biomed Mater. Vol. 82, pp. 320–328, 2018.
75. Putzer, M., Auer, S., Malpica, W., Suess, F., et al. A Numerical Study to Determine the Effect of Ligament Stiffness on Kinematics of the Lumbar Spine During Flexion. BMC Musculoskelet Disord. Vol. 17, Original Number. 95, 2016.
76. 陶仕晉,腰椎後路穩定系統設計最佳化及其生物力學影響,國立中央大學機械工程學系,碩士論文,2014.
77. Zhong, Z. C., Wei, S. H., Wang, J. P., Feng, C. K., et al. Finite Element Analysis of the Lumbar Spine with a New Cage Using a Topology Optimization Method. Med Eng Phys. Vol. 28, pp. 90–98, 2006.
78. Shirazi-Adl, A., Ahmed, A. M., Shrivastava, S. C. Mechanical Response of a Lumbar Motion Segment in Axial Torque Alone and Combined with Compression. Spine (Phila Pa 1976). Vol. 11, pp. 914–927, 1986.
79. Mikuckytė, S., Ostaševičius, V., Numerical Study of Lateral Bending Influence on Lumbar Intervertebral Disc. Vibroengineering Procedia. Vol. 15, ISSN. 2345-0533, 2017.
80. Baroud, G., Nemes, J., Heini, P., Steffen, T., Load Shift of the Intervertebral
Disc After a Vertebroplasty: A Finite-Element Study. Eur Spine J. Vol. 12, pp. 421–426, 2003.
81. Barthelemy, V. M., van Rijsbergen, M. M., Wilson, W., Huyghe, J. M., et al. A Computational Spinal Motion Segment Model Incorporating a Matrix Composition-Based Nodel of the Intervertebral Disc. J Mech Behav Biomed Mater. Vol. 54, pp. 194–204, 2016.
82. C. M. Bellini, F. Galbusera, M. T. Raimodi, G. V. Mineo, M. Brayda-Bruno, Biomechanics of the Lumbar Spine after Dynamic Stabilization. J Spinal Disord Tech. Vol. 20, Iss. 6, pp. 423-429, 2007.
83. Shen, H., Fogel, G. R., Zhu, J., Liao, Z., et al. Biomechanical Analysis of Different Lumbar Interspinous Process Devices: A Finite Element Study. World Neurosurg. Vol. 127, pp. e1112–e1119, 2019.
84. SOLID187.Availablefrom: https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_SOLID187.html
85. COMBIN39. Available from: https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_COMBIN39.html
86. Polikeit, A., Ferguson, S. J., Notle, L. P., Orr, T. E. Factors Influencing Stresses in the Lumbar Spine After the Insertion of Intervertebral Cages: Finite Element Analysis. Eur Spine J. Vol. 12, pp. 413–420, 2003.
87. Galbusera, F., Schmidt, H., Wilke, H. J. Lumbar Interbody Fusion: A Parametric Investigation of a Novel Cage Design with and without Posterior Instrumentation. Eur Spine J. Vol. 21, pp. 455–462, 2012.
88. L. M. Ruberte, R. N. Natarajan, and G. B. Andersson, Influence of Single-Level Lumbar Degenerative Disc Disease on the Behavior of the Adjacent Segments-a Finite Element Model Study. J Biomech. Vol. 42, Iss. 3, pp. 341-348, 2009.
89. Placzek, J. D., Boyce, D. A., Orthopaedic Physical Therapy Secrets. 3th ed. Elsevier, 2016. ISBN: 9780323286862.
90. Guo, L. X., Li, R., Zhang, M., Biomechanical and Fluid Flowing Characteristics of Intervertebral Disc of Lumbar Spine Predicted by Poroelastic Finite Element Method. Acta Bioeng Biomech. Vol. 18, pp. 19–29, 2016.
91. 姜智騫,以有限元素法分析腰椎退化性疾病經後方融合手術後已退化鄰近節之生物力學研究,國立成功大學土木工程學系,碩士論文,2014.
92. 楊銘安,不同脊椎後方骨融合術於腰椎椎間盤退化問題之治療策略與生醫力學分析,國立臺灣科技大學機械工程系,碩士論文,2016.
93. Fan, Y., Zhou, S., Xie, T.,Yu, Z. et al. Topping-Off Surgery vs Posterior Lumbar Interbody Fusion for Degenerative Lumbar Disease: A Finite Element Analysis. J Orthop Surg Res. Vol. 14, Original Number. 476, 2019.
94. Lo, H.-J., Chen, H.-M., Kuo, Y.-J., Yang, S.-W., et al. Effect of Different Designs of Interspinous Process Devices on the Instrumented and Adjacent Levels After Double‑Level Lumbar Decompression Surgery: A Finite Element Analysis. PLoS One. Vol. 15, Original Number. e0244571, 2020.
95. Xie, F., Zhou, H., Zhao, W., Zhao, W., et al. A Comparative Study on The Mechanical Behavior of Intervertebral Disc Using Hyperelastic Finite Element Model. Technol Health Care. Vol. 25, pp. 177-187, 2017.