| 研究生: |
楊詠晴 Yung-Ching Yang |
|---|---|
| 論文名稱: |
透過三維震波傳遞模擬探討速度脈衝的生成—以 2016年美濃地震與 2018年花蓮地震為例 Investigating Velocity Pulse Generation through 3 -D Ground Motion Modeling Case Studies of the 2016 Meinong and 2018 Hualien Earthquakes in Taiwan |
| 指導教授: |
謝銘哲
林彥宇 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 速度脈衝 、地震動模擬 、有限差分法 、Recipe 方法 |
| 相關次數: | 點閱:36 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年研究指出,許多地震事件中常觀測到速度脈衝特徵,該現象被歸因於破裂方向性效應,並與嚴重地震災損密切相關。例如,臺灣的2016年美濃地震與2018年花蓮地震中,均觀測到顯著的脈衝型地震動,並造成建築物的嚴重傾倒。為探討速度脈衝之成因與影響因子,本研究針對上述兩起地震事件作為研究案例,採用三維牽引力鏡像有限差分法進行低頻段地震波傳遞模擬,震源模型方面採用有限斷層模型以及透過Recipe方法建構之特徵震源模型,速度構造模型則考量含地表地形之三維速度構造,並將模擬結果與觀測資料進行比較分析,進一步以脈衝指標判別地震動是否具有脈衝特徵,以及與CH20地震動模型進行比較。結果顯示,震波模擬方法於美濃地震案例較花蓮地震案例對於脈衝波之成因解釋性較高;進一步分析發現,震源模型之地栓幾何與破裂速度對速度脈衝生成影響最為顯著;路徑效應方面,HH_surface速度構造模型(Huang et al., 2014)與HH速度構造模型(Huang et al., 2014,無沉積層)相較不含淺層速度構造的KC速度構造模型(Kuo-Chen et al., 2012)更易於生成脈衝訊號,並強調淺層速度構造對於生成脈衝訊號具有貢獻;而模擬所得的脈衝週期介於1至3秒。綜合以上結果,本研究亦探討震源模型建立方式、經驗式選用與地形解析度對模擬結果之影響,並指出選用適合的方式建立模型之必要性,期望未來能提升預估含脈衝特徵之地震動強度的準確性。
Recent studies have pointed out that many earthquake events frequently exhibit velocity pulse characteristics, which are attributed to rupture directivity effects and are closely associated with severe seismic damage. For example, the 2016 Meinong and 2018 Hualien earthquakes in Taiwan both displayed prominent pulse-like waveforms that led to building collapses. To investigate the causes and influencing factors of velocity pulse generation, this study uses these two events as case studies and performs low-frequency 3-D ground motion simulations using the traction-image finite-difference method. Finite-fault models and characteristic source models constructed using the Recipe method are employed, and 3-D velocity structures incorporating surface topography are considered. Synthetic waveforms are first compared with observations, followed by the identification of velocity pulses using a pulse recognition technique. These ground motions are also compared with predictions from the CH20 ground motion model.
Simulation results indicate that the 2016 Meinong earthquake case provides better explanation of the observed pulse features compared to the 2018 Hualien earthquake case. Further analysis reveals that asperity geometry and rupture velocity in the source models have the most significant influence on pulse generation. In terms of path effects, the HH_surface (Huang et al., 2014) and HH (Huang et al., 2014, without sedimentary layer) velocity models are more prone to generating pulse signals than the KC model (Kuo-Chen et al., 2012), and the shallow low-velocity layers in HH_surface model contribute noticeably to pulse generation. Furthermore, the simulated pulse periods range between 1 and 3 seconds. This study also explores the impact of different source modeling approaches, the selection of empirical equations, and the resolution of topographic data on simulation outcomes. It also highlights the necessity of adopting appropriate modeling strategies to enhance waveform modeling accuracy for seismic hazard assessment.
Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 Ground Motion Relation for Active Crustal Regions. Earthquake Spectra, 30(3), 1025–1055. https://doi.org/10.1193/070913EQS198M
Amante, C. and B.W. Eakins, 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M
Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S. J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M., Kishida, T., & Donahue, J. L. (2013). PEER NGA-West2 Database, PEER Report 2013-03. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA. https://peer.berkeley.edu/sites/default/files/2013_03_ancheta_7.3.2020.pdf
Atkinson, G. M., & Assatourians, K. (2015). Implementation and Validation of EXSIM (A Stochastic Finite-Fault Ground-Motion Simulation Algorithm) on the SCEC Broadband Platform. Seismological Research Letters, 86(1), 48–60. https://doi.org/10.1785/0220140097
Baltzopoulos, G., Luzi, L., & Iervolino, I. (2020). Analysis of Near-Source Ground Motion from the 2019 Ridgecrest Earthquake Sequence. Bulletin of the Seismological Society of America, 110(4), 1495–1505. https://doi.org/10.1785/0120200038
Berland, J., Bogey, C., Marsden, O., & Bailly, C. (2007). High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems. Journal of Computational Physics, 224(2), 637–662. https://doi.org/10.1016/j.jcp.2006.10.017
Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra, 30(3), 1057–1085. https://doi.org/10.1193/070113EQS184M
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research (1896-1977), 75(26), 4997–5009. https://doi.org/10.1029/JB075i026p04997
Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra, 30(3), 1087–1115. https://doi.org/10.1193/062913EQS175M
Chao, S.-H., Chiou, B., Hsu, C.-C., & Lin, P.-S. (2020). A horizontal ground-motion model for crustal and subduction earthquakes in Taiwan. Earthquake Spectra, 36(2), 463–506. https://doi.org/10.1177/8755293019891711
Chioccarelli, E., & Iervolino, I. (2010). Near-source seismic demand and pulse-like records: A discussion for L’Aquila earthquake. Earthquake Engineering & Structural Dynamics, 39(9), 1039–1062. https://doi.org/10.1002/eqe.987
Chiou, B. S.-J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 30(3), 1117–1153. https://doi.org/10.1193/072813EQS219M
Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2), 3139–3156. https://doi.org/10.1029/95JB03446
Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B6), 9761–9788. https://doi.org/10.1029/95JB00259
Cork, T. G., Kim, J. H., Mavroeidis, G. P., Kim, J. K., Halldorsson, B., & Papageorgiou, A. S. (2016). Effects of tectonic regime and soil conditions on the pulse period of near-fault ground motions. Soil Dynamics and Earthquake Engineering, 80, 102–118. https://doi.org/10.1016/j.soildyn.2015.09.011
Crempien, J. G. F., & Archuleta, R. J. (2015). UCSB Method for Simulation of Broadband Ground Motion from Kinematic Earthquake Sources. Seismological Research Letters, 86(1), 61–67. https://doi.org/10.1785/0220140103
Das, S., and Kostrov, B. V. (1986), Fracture of a single asperity on a finite fault, In Earthquake Source Mechanics (Geophysical Monograph 37, Maurice Ewing Series 6, American Geophysical Union) pp. 91–96.
Dreger, D., Hurtado, G., Chopra, A., & Larsen, S. (2011). Near-Field Across-Fault Seismic Ground Motions. Bulletin of the Seismological Society of America, 101(1), 202–221. https://doi.org/10.1785/0120090271
Fayjaloun, R., Causse, M., Voisin, C., Cornou, C., & Cotton, F. (2017). Spatial Variability of the Directivity Pulse Periods Observed during an Earthquake. Bulletin of the Seismological Society of America, 107(1), 308–318. https://doi.org/10.1785/0120160199
Frankel, A., Wirth, E., Marafi, N., Vidale, J., & Stephenson, W. (2018). Broadband Synthetic Seismograms for Magnitude 9 Earthquakes on the Cascadia Megathrust Based on 3D Simulations and Stochastic Synthetics, Part 1: Methodology and Overall Results. Bulletin of the Seismological Society of America, 108(5A), 2347–2369. https://doi.org/10.1785/0120180034
Geller, R. J., & Takeuchi, N. (1998). Optimally accurate second-order time-domain finite difference scheme for the elastic equation of motion: One-dimensional case. Geophysical Journal International, 135(1), 48–62. https://doi.org/10.1046/j.1365-246X.1998.00596.x
Graves, R., & Pitarka, A. (2015). Refinements to the Graves and Pitarka (2010) Broadband Ground-Motion Simulation Method. Seismological Research Letters, 86(1), 75–80. https://doi.org/10.1785/0220140101
Graves, R. W. (1996). Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America, 86(4), 1091–1106. https://doi.org/10.1785/BSSA0860041091
Hartzell, S. H., & Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73(6A), 1553–1583. https://doi.org/10.1785/BSSA07306A1553
Herrero, A., & Bernard, P. (1994). A kinematic self-similar rupture process for earthquakes. Bulletin of the Seismological Society of America, 84(4), 1216–1228. https://doi.org/10.1785/BSSA0840041216
Hixon, R. (1997). On increasing the accuracy of MacCormack schemes for aeroacoustic applications. 3rd AIAA/CEAS Aeroacoustics Conference. 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta,GA,U.S.A. https://doi.org/10.2514/6.1997-1586
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026
Huang, M.-H., & Huang, H.-H. (2018). The Complexity of the 2018 M w 6.4 Hualien Earthquake in East Taiwan. Geophysical Research Letters, 45(24). https://doi.org/10.1029/2018GL080821
Irikura, K., & Miyake, H. (2001). Prediction of strong ground motions for scenario earthquakes. Journal of Geography. 110. 849-875.
Irikura, K., & Miyake, H. (2011). Recipe for Predicting Strong Ground Motion from Crustal Earthquake Scenarios. Pure and Applied Geophysics, 168(1–2), 85–104. https://doi.org/10.1007/s00024-010-0150-9
Kamai, R., Abrahamson, N., & Graves, R. (2014). Adding Fling Effects to Processed Ground-Motion Time Histories. Bulletin of the Seismological Society of America, 104(4), 1914–1929. https://doi.org/10.1785/0120130272
Kanamori, H., Ye, L., Huang, B.-S., Huang, H.-H., Lee, S.-J., Liang, W.-T., Lin, Y.-Y., Ma, K.-F., Wu, Y.-M., & Yeh, T.-Y. (2017). A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw = 6.4). Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 637–650. https://doi.org/10.3319/TAO.2016.10.07.01
Kim, K.-H., Chiu, J.-M., Pujol, J., Chen, K.-C., Huang, B.-S., Yeh, Y.-H., & Shen, P. (2005). Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region. Geophysical Journal International, 162(1), 204–220. https://doi.org/10.1111/j.1365-246X.2005.02657.x
Kuo, C.-H., Huang, J.-Y, Lin, C.-M., Hsu, T.-Y., Chao, S.-H., & Wen, K.-L. (2019). Strong Ground Motion and Pulse‐Like Velocity Observations in the Near‐Fault Region of the 2018 Mw 6.4 Hualien, Taiwan, Earthquake. Seismological Research Letters, 90(1), 40–50. https://doi.org/10.1785/0220180195
Kuo-Chen, H., Wu, F. T., Jenkins, D. M., Mechie, J., Roecker, S. W., Wang, C. ‐Y., & Huang, B. ‐S. (2012a). Seismic evidence for the α ‐ β quartz transition beneath Taiwan from Vp/Vs tomography. Geophysical Research Letters, 39(22), 2012GL053649. https://doi.org/10.1029/2012GL053649
Kuo-Chen, H., Wu, F. T., & Roecker, S. W. (2012b). Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(B6). https://doi.org/10.1029/2011JB009108
Lee, S.-J, Lin, T., Liu, T., & Wong, T. (2019). Fault‐to‐Fault Jumping Rupture of the 2018 Mw 6.4 Hualien Earthquake in Eastern Taiwan. Seismological Research Letters, 90(1), 30–39. https://doi.org/10.1785/0220180182
Lee, S.-J, Yeh, T., & Lin, Y. (2016a). Anomalously Large Ground Motion in the 2016 ML 6.6 Meinong, Taiwan, Earthquake: A Synergy Effect of Source Rupture and Site Amplification. Seismological Research Letters, 87(6), 1319–1326. https://doi.org/10.1785/0220160082
Lee, S.-J., Komatitsch, D., Huang, B.-S., & Tromp, J. (2009). Effects of Topography on Seismic-Wave Propagation: An Example from Northern Taiwan. Bulletin of the Seismological Society of America, 99(1), 314–325. https://doi.org/10.1785/0120080020
Lee, Y.-T., Ma, K.-F., Hsieh, M.-C., Yen, Y.-T., & Sun, Y.-S. (2016b). Synthetic Ground-Motion Simulation Using a Spatial Stochastic Model with Slip Self-Similarity: Toward Near-Source Ground-Motion Validation. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 397. https://doi.org/10.3319/TAO.2015.11.27.01(TEM)
Levander, A. R. (1988). Fourth‐order finite‐difference P-SV seismograms. GEOPHYSICS, 53(11), 1425–1436. https://doi.org/10.1190/1.1442422
Lin, C.-H. (2000). Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophysics, 324(3), 189–201. https://doi.org/10.1016/S0040-1951(00)00117-7
Lin, P.-S., & Lee, C.-T. (2008). Ground-Motion Attenuation Relationships for Subduction-Zone Earthquakes in Northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1), 220–240. https://doi.org/10.1785/0120060002
Lin, Y.-Y., Kanamori, H., Zhan, Z., Ma, K.-F., & Yeh, T.-Y. (2020). Modelling of pulse-like velocity ground motion during the 2018 Mw 6.3 Hualien earthquake, Taiwan. Geophysical Journal International, 223(1), 348–365. https://doi.org/10.1093/gji/ggaa306
Maccormack, R. (1969). The effect of viscosity in hypervelocity impact cratering. 收入 4th Aerodynamic Testing Conference. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1969-354
Maechling, P. J., Silva, F., Callaghan, S., & Jordan, T. H. (2015). SCEC Broadband Platform: System Architecture and Software Implementation. Seismological Research Letters, 86(1), 27–38. https://doi.org/10.1785/0220140125
Mai, P. M., & Beroza, G. C. (2000). Source Scaling Properties from Finite-Fault-Rupture Models. Bulletin of the Seismological Society of America, 90(3), 604–615. https://doi.org/10.1785/0119990126
Mena, B., & and Mai, P. M. (2011). Selection and quantification of near-fault velocity pulses owing to source directivity. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 5(1), 25–43. https://doi.org/10.1080/17499511003679949
Miyake, H. (2003). Source Characterization for Broadband Ground-Motion Simulation: Kinematic Heterogeneous Source Model and Strong Motion Generation Area. Bulletin of the Seismological Society of America, 93(6), 2531–2545. https://doi.org/10.1785/0120020183
Miyake, H., Iwata, T., & Irikura, K. (2001). Estimation of rupture propagation direction and strong motion generation area from azimuth and distance dependence of source amplitude spectra. Geophysical Research Letters, 28(14), 2727–2730. https://doi.org/10.1029/2000GL011669
Ohno, I., Harada, K., & Yoshitomi, C. (2006). Temperature variation of elastic constants of quartz across the α—β transition. Physics and Chemistry of Minerals, 33(1), 1–9. https://doi.org/10.1007/s00269-005-0008-3
Phung, V.-B., Loh, C. H., Chao, S. H., Chiou, B. S., & Huang, B.-S. (2020). Ground motion prediction equation for crustal earthquakes in Taiwan. Earthquake Spectra, 36(4), 2129–2164. https://doi.org/10.1177/8755293020919415
Rau, R.-J., & Wu, F. T. (1995). Tomographic imaging of lithospheric structures under Taiwan. Earth and Planetary Science Letters, 133(3), 517–532. https://doi.org/10.1016/0012-821X(95)00076-O
Roecker, S., Thurber, C., Roberts, K., & Powell, L. (2006). Refining the image of the San Andreas Fault near Parkfield, California using a finite difference travel time computation technique. Tectonophysics, 426(1), 189–205. https://doi.org/10.1016/j.tecto.2006.02.026
Scholz, C. H. (2002). The Mechanics of Earthquakes and Faulting. Cambridge University Press. https://doi.org/10.1017/CBO9780511818516
Shahi, S. K., & Baker, J. W. (2014). An Efficient Algorithm to Identify Strong-Velocity Pulses in Multicomponent Ground Motions. Bulletin of the Seismological Society of America, 104(5), 2456–2466. https://doi.org/10.1785/0120130191
Shen, A. H., Bassett, W. A., & Chou, I.-M. (1993). The α-β quartz transition at high temperatures and pressures in a diamond-anvil cell by laser interferometry. American Mineralogist, 78(7–8), 694–698.
Somerville, P. G. (2003). Magnitude scaling of the near fault rupture directivity pulse. Physics of the Earth and Planetary Interiors, 137(1–4), 201–212. https://doi.org/10.1016/S0031-9201(03)00015-3
Somerville, P. G., Smith, N. F., Graves, R. W., & Abrahamson, N. A. (1997). Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity. Seismological Research Letters, 68(1), 199–222. https://doi.org/10.1785/gssrl.68.1.199
Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N., & Kowada, A. (1999). Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological Research Letters, 70(1), 59–80. https://doi.org/10.1785/gssrl.70.1.59
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/BSSA0840040974
Wen, Y.-Y., Wen, S., Lee, Y.-H., & Ching, K.-E. (2019). The kinematic source analysis for 2018 Mw 6.4 Hualien, Taiwan earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 377–387. https://doi.org/10.3319/TAO.2018.11.15.03
Wu, F. T., Rau, R.-J., & Salzberg, D. (1997). Taiwan orogeny: Thin-skinned or lithospheric collision? Tectonophysics, 274(1), 191–220. https://doi.org/10.1016/S0040-1951(96)00304-6
Wu, Y.-M., Chang, C.-H., Zhao, L., Shyu, J. B. H., Chen, Y.-G., Sieh, K., & Avouac, J.-P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. Journal of Geophysical Research: Solid Earth, 112(B8), 2007JB004983. https://doi.org/10.1029/2007JB004983
Yen, M.-H., Von Specht, S., Lin, Y.-Y., Cotton, F., & Ma, K.-F. (2022). Within- and Between-Event Variabilities of Strong-Velocity Pulses of Moderate Earthquakes within Dense Seismic Arrays. Bulletin of the Seismological Society of America, 112(1), 361–380. https://doi.org/10.1785/0120200376
Yen, Y.-T., & Ma, K.-F. (2011). Source-Scaling Relationship for M 4.6-8.9 Earthquakes, Specifically for Earthquakes in the Collision Zone of Taiwan. Bulletin of the Seismological Society of America, 101(2), 464–481. https://doi.org/10.1785/0120100046
Zhang, W., & Chen, X. (2006). Traction image method for irregular free surface boundaries in finite difference seismic wave simulation. Geophysical Journal International, 167(1), 337–353. https://doi.org/10.1111/j.1365-246X.2006.03113.x
Zhang, W., & Shen, Y. (2010). Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling. GEOPHYSICS, 75(4), T141–T154. https://doi.org/10.1190/1.3463431
Zhang, W., Zhang, Z., & Chen, X. (2012). Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids: 3-D elastic wave modelling with topography. Geophysical Journal International, 190(1), 358–378. https://doi.org/10.1111/j.1365-246X.2012.05472.x
Zingg, D. W. (2000). Comparison of High-Accuracy Finite-Difference Methods for Linear Wave Propagation. SIAM Journal on Scientific Computing, 22(2), 476–502. https://doi.org/10.1137/S1064827599350320
地震調査研究推進本部地震調査委員会(2020):震源断層を特定した地震の強震動予測手法「(レシピ」) (令和2年(2020年) 3月6日)
何丞穎、林哲民、郭俊翔、饒瑞鈞、溫國樑:〈由兩起0206強震反思近斷層地動研究在台灣的重要性與挑戰〉,《中國土木水利工程學刊》,31(5),2019,501-511頁。
郭俊翔、林哲民、章順強、溫國樑、謝宏灝:《台灣強震測站場址資料庫》,國家地震工程研究中心,NCREE-17-004,共80 頁,2017。
郭俊翔、黃雋彥、林哲民、趙書賢、林沛暘、溫國樑、蕭乃祺、林金泉、蕭柔祺。〈0206花蓮地震強地動記錄與近斷層波形特徵〉。《地工技術》,156 2018.06[民107.06],頁25-34。
郭陳澔、景國恩、馬國鳳、饒瑞鈞、古心蘭、鄭璟郁、陳江鑫、石晶瑩、蕭欣宜、何宗璟、黃俊銘、賴思穎、鍾佩瑜、甘禮有、劉婉姿、劉嘉穎、李依倢、賴思穎、賴思廷、趙澤民、廖勿渝、林桂鋒、魯曜銓、黃正允、管卓康、何俊瑋、林耕霈:《2016年0206美濃震後科學調查-2016年0206美濃震後科學調查》,科技部補助專題研究計畫成果報告,MOST 106-2119-M-008-006,2017。
國家地震工程研究中心:《2016美濃地震台南市震損建物資料庫》,國家地震工程研究中心,NCREE-18-004,2018a。
國家地震工程研究中心:《2018年2月6日花蓮地震勘災報告》,國家地震工程研究中心,NCREE-18-005,2018b。
國家地震工程研究中心:《近斷層脈衝歷時資料庫》,國家地震工程研究中心,NCREE-19-010,2019。
經濟部中央地質調查所:《20160206美濃地震地質調查報告》,經濟部中央地質調查所,2016。
經濟部中央地質調查所:《20180206花蓮地震地質調查報告》,經濟部中央地質調查所,2018。
Global CMT Catalog Search. https://www.globalcmt.org/CMTsearch.html
Real-Time Moment Tensor Monitoring System(RMT). https://rmt.earth.sinica.edu.tw/
中央氣象署。https://scweb.cwa.gov.tw/zh-tw/earthquake/data/
內政部20公尺解析度之數值地形模型(Digital terrain model, DTM)。政府資料開放平台。https://data.gov.tw/dataset/169807
近斷層脈衝歷時資料庫(Database of Near-Fault Strong Motions with Pulse-like Velocity)。http://nfpv.ncree.org.tw/
臺灣地震模型(Taiwan Earthquake Model, TEM) https://tem.tw/TEM2020/Seismogenic_fault/32Milun_fault/2017_32Milun.docx.html
臺灣地震動分布評估系統 (Taiwan ShakeMap Assessment System)。https://seaport.ncree.org/smap/
臺灣數值地震模型平台(Taiwan Numerical Earthquake Model, TNEM)。https://tnem.earth.sinica.edu.tw/download.php