| 研究生: |
鄒佳臻 Chia-Chen Tsou |
|---|---|
| 論文名稱: |
具N, N’-二苯吡啶醯胺(N, N’-diphenylpyridine-2,6-dicarboxamide)螢光化學感應器對陰離子感應行為之研究 N,N’-diphenylpyridine-2,6-dicarboxamide-based fluorescent chemosensors for sensing anions. |
| 指導教授: |
孫世勝
Shih-Sheng Sun 楊吉水 Jye-Shane Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 183 |
| 中文關鍵詞: | 螢光化學感應器 、陰離子化學感應器 、陰離子辨識 、化學感應器 、二苯吡啶醯胺 |
| 外文關鍵詞: | anion recognition, diphenylpyridine, dicarboxamide, fluorescent chemosensor, anion, chemosensor, sensor |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們設計並合成出含有N, N’-二苯吡啶醯胺(N, N’-diphenyl-
pyridine-2,6-dicarboxamide)為核心結構的陰離子辨識單元,做為螢光離子感應器。利用紫外光/可見光(UV/Vis)吸收光譜與螢光放射光譜的變化,來探討螢光離子感應器與鹵素離子(F-、Cl-、Br-、 I-)、氰根離子(CN-)、硝酸根離子(NO3-)、醋酸根離子 (CH3COO-)、硫酸氫根離子(HSO4-)、磷酸氫根離子(H2PO4-)與焦磷酸根離子(HP2O73-)的結合能力。
此兩螢光離子感應器對四面體形狀的焦磷酸根離子與磷酸氫根離子具有特殊的選擇性,結合常數高於其他幾何形狀的陰離子,如平面三角、線型與球型的陰離子。另外對陰電性最高的氟離子具有高度的結合能力。且對此三種結合力強的分子均是以螢光增強的方式表現。而其作用方式是與離子形成氫鍵,改變HOMO與LUMO間的能階差,以及結構變得更剛性,而造成藍位移與螢光增強的現象。磷酸氫根離子與螢光離子感應器間是以1:1的比例結合,推斷磷酸氫根離子與螢光離子感應器上的四組醯胺鍵形成氫鍵,並使兩個陰離子辨識單元以面對面的結構與磷酸氫根離子穩定的結合。
此外,螢光離子感應器M2在溶劑中會形成膠體狀態,且待溶劑揮發後,可形成透明的薄膜。此薄膜是由許多的絲狀結構所形成。
Two N,N’-diphenylpyridine-2,6-dicarboxamide-based fluorescent chemosensors M1 and M2 were designed and synthesized for sensing anions. The binding affinity of M1 and M2 toward various anions was investigated by UV-Vis and fluorescence spectroscopy. Several anions were surveyed in this research, including hydrogen phosphate, pyrophosphate, halides, cyanide, nitrate, hydrogen sulfate and acetate. Notably, both M1 and M2 are particularly sensitive to anions with tetrahedron geometry, i.e. pyrophosphate and hydrogen phosphate. In general, binding constants of these two anions are higher than other anions with different geometries. The 1:1 binding ratio of the chemosensor-anion complex was determined by Job-plot. A blueshift in fluorescence spectra of M1 and M2 were observed upon titration of with fluoride, pyrophosphate and hydrogen phosphate. It is believed that blueshift was induced by raising the LUMO with the formation of hydrogen bonds between the anions and amide hydrogens.
In addition, M2 formed gel-like structure in certain solvents. Some tubular structures were constructed after solvent evaporation, which could be observed by microscopes. The study of the nature and properties of the gel is under progress.
1.Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. 2001, 40, 486.
2.(a)行政院勞工委員會採樣分析建議方法;(b) 行政院環保署環境檢驗所水中陰離子檢測方法-離子層析法(c) 行政院環保署環境檢驗所空氣中無機酸類之檢測方法-離子層析電導度法
3.(a) Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3-40.;
(b) Schemehl, R. H.; Li, C. J.; Xia, W. S.; Mague, J. T.; Luo, C. P.; Guldi, D. M. J. Phys.Chem. B. 2002, 106, 833-843
(c) Masilamani, D.; Lucas, M. E. In Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W., Ed.; American Chemical Society: Washington, DC, 1992.
4.Shannon, R. D. Acta Crystallogr. Sect. A, 1976, 32, 751.
5.Hofmeister, F. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247.
6.Mangani, S., M. Ferraroni in Supramolecular Chemistry of Anions, (Eds.: Bianchi, A.; Bowman-James, K.; Garcia-España, E.), Wiley-VCH, New York, 1997, p. 63.
7.Park, C. H.; Simmons, H. E. J. Am. Chem. Soc. 1968, 90, 2431.
8.Graf, E.; Lehn, J.-M. J. Am. Chem. Soc. 1976, 98, 6403.
9.Pascal, R. A.; Spergel, J.; Engbersen, D. V. Tetrahedron Lett. 1986, 27, 4099.
10.Valiyaveettil, S.; Engbersen, J. F. J.; Verboom, W.; Reinhoudt, D. N. Angew. Chem. Int. Ed. 1993, 32, 900.
11.Raposo, C.; Perez, N.; Almaraz, M.; Mussons, M. L.; Caballero, M. C.; Moran, J. R. Tetrahedron Lett. 1995, 36, 3255.
12.Kavallieratos, K.; de Gala, S. R.; Austin, D. J.; Crabtree, R. H. J. Am. Chem. Soc. 1997, 119, 2325.
13.Kavallieratos, K.; Bertao, C. M.; Crabtree, R. H. J. Org. Chem., 1999, 64, 1675.
14.Bisson, A. P.; Lynch, V. M.; Monahan, M. K. C.; Anslyn, E. V. Angew. Chem. Int. Ed. 1997, 36, 2340.
15.Niikura, K.; Bisson, A. P.; Anslyn, E. V. J. Chem. Soc., Perkin Trans. 2 1999, 1111.
16.Sun, S.-S.; Lees, A. J. Chem. Commun. 2000, 1687.
17.Liao, J.-H.; Chen, C.-T.; Fang, J.-M. Org. Lett. 2002, 4, 561.
18.Sessler, J. L.; Katayev, E.; Pantos, G. D.; Ustynyuk, Y. A. Chem. Commun. 2004, 1276.
19.Kovalchuk, A.; Bricks, J. L.; Reck, G.; Rurack, K.; Schulz, B.; Szumna, A.; Weiβhoff, H. Chem. Commun. 2004, 1946.
20.(a) Gronowitz, S.; Holm, B. Acta Chemica Scandinavica B. 1976, 30, 423.; (b) Steinkopf, W.; Schmitt, H. F.; Fiedlar, H. Justus Liebigs Ann. Chem. 1937, 527, 237.
21.Neenan, T. X.; Whitesides, G. M. J. Org. Chem. 1988, 53, 2489.
22.Eaton, D. F. Pure. Appl. Chem. 1988, 60, 1107-1114.
23.Armarego, W. L. F.; Chain, C. L. L.; Purification of Laboratory Chemicals. Butterworth Heinemann.
24.Horváth, G.; Rusa, C.; Köntös, Z.; Gerencsér, J.; Huszthy, P. Synthetic. Communications. 1999, 29(21), 3719
25.Pryor, K. E.; Shipps, G. W.; Skyler, D, A.; Rebek, J. Tetrahedron. 1998, 54, 4107-4124.
26.Percec, V.; Ahn, C.-H.; Bera, T. K.; Ungar, G.; Yeardley, D. J. P. Chem. Eur. J. 1999, 5, 1070.
27.Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler, J. L. J. Am. Chem. Soc. 1999, 121, 10438.
28.Das, K.; Nakade, H.; Penelle, J.; Rotello, V. M. Macromolecules 2004, 37, 310.