跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林揚益
Yang-Yi Lin
論文名稱: 高摻雜之二氧化錫薄膜能隙窄化現象及氧化銦薄膜之應力量測與探討
Bandgap Narrowing in High Dopant Tin Oxide and Stress Measurement of Flexible ITO Thin Film
指導教授: 吳子嘉
Albert T. Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 99
中文關鍵詞: 透明導電薄膜能隙窄化可撓式基板
外文關鍵詞: Transparent conductive oxide, Bandgap narrowing, Flexible substrate
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究主題分成兩大方向來探討透明導電薄膜。首先以四氯化錫(SnCl4)和五氯化銻(SbCl5)作為前驅物,以大氣化學氣相沉積法(APCVD),通入不同比例之前驅物,製備摻雜銻之二氧化錫(SnO2:Sb)透明導電薄膜於玻璃基板上。希冀在不影響光學穿透為前提,以高濃度摻雜方式降低薄膜電阻率。另外以捲對捲式(roll-to-roll)脈衝濺鍍法製備氧化銦(ITO)透明導電薄膜於PET基板上退火後量測電性,探討脈衝濺鍍法對ITO薄膜在長時間退火過程中的影響與變化。另外,將ITO薄膜製備於可撓式玻璃基板,在不同環境下退火探討其電性及光學性質並找出最低電阻率後,以同步輻射GIXRD結合cos2αsin2Ψ方法量測ITO薄膜受到張應力(tensile stress)和壓應力(compresive stress)下之應力變化。在高濃度摻雜實驗中發現,在光學能隙隨著摻雜濃度提升,出現能隙窄化之現象。此能隙窄化現象是受到摻雜原子之影響,使能隙計算上需考慮帶尾能態(Band tailing)現象。另外還需考慮自身能態(Self energy),摻雜後電子與電子及電子與摻雜原子之間作用力的影響。在捲對捲脈衝式濺鍍法製備ITO薄膜於PET基板上,調整不同duty ratio比例並進行不同時間退火及量測電性。從實驗結果中發現,在退火後1個小時後,因受到薄膜結晶的影響,載子移動率(mobility)增加幅度遠大於載子濃度(carrier concentration)衰退幅度,使ITO薄膜有最大的電性變化。將ITO薄膜鍍製於可撓式玻璃上,在真空環境下,退火溫度在300 ℃及退火時間一個小時下,其薄膜會有最高的平均穿透率及最低電阻率。量測應力實驗發現ITO薄膜退火後,仍存有很大的張應力。施加外加應力也很難抵消或增加其殘留應力,因此ITO薄膜受到捲對捲式(roll-to-roll)製程的影響,其製程殘留應力為最主要應力來源。


    In order to reduce the resistivity of tin oxide thin film, antimony-doped tin oxide (SnO2:Sb, ATO) films have been deposited on glass substrates using atmospheric pressure chemical vapor deposition (APCVD) method. The precursors are mixed with SnCl4, SbCl5 and O2 to prepare the films. The precursors of chlorine ions involved in doping and reduced the resistivity. This study used synchrotron grazing incidence X-Ray diffraction (GIXRD) to investigate the film microstructure. Our results show that the precursors of chlorine ions were involved in the doping mechanism, causing the microstructure of films to change slightly. The film has an average transmittance between 85.8 % and 74.3 % within a visible spectral range from 400 nm to 800 nm. The minimal resistivity was 5.0 x10-4 Ωcm after doping. Figure of merit suggested that the film deposited at 500 ℃ with R equals to 0.5 has the best quality. The dopant caused a narrowing of bandgap that was due to interaction between electrons and impurities. The synchrotron GIXRD data show that the chlorine ions caused the lattice constant change. The tin doped indium oxide (ITO) thin films were prepared on polyethylene terephthalate (PET) substrate by roll-to-roll pulsed DC sputtering with various duty ratios. The films were ex-situ annealing at 150 ℃ for 0.5 to 15 hour in air. The purpose of this study is to know the pulsed DC effect on conductive and microstructure of the film. It was found that the pulsed DC could affect on conductivity, long time annealing. The ITO film deposited on flexible glass substrate by roll-to-roll DC sputtering. The synchrotron GIXRD was measured residual stress, compressive stress, and tensile stress of the film. In our results, the compressive stress is hard to relaxation after annealing an hour in vacuum at 300 ℃. The external stress is hard to affect the ITO thin film residual stress.

    Chapter 1 Introduction 1 1.1 Transparent Conductive Oxide Film (TCO) 4 1.2 Classification of TCO Films 7 1.2.1 P-type and n-type TCO films 7 1.2.2 Classification of n-type TCO films 8 1.2.3 Major TCO films 9 1.3 Deposition Methods 10 1.3.1 Major deposition methods 10 1.3.2 Spray pyrolysis 11 1.3.3 Evaporation 11 1.3.4 Atmospheric pressure chemical vapor deopsition (APCVD) 12 1.3.5 Roll-to-roll and pulsed-DC sputtering 12 1.3.6 Pulsed laser deposition (PLD) 14 1.4 Present Status of TCO Development 15 1.5 Material Property and Physical Theory of TCO Films 17 1.5.1 Electrical property 17 1.5.2 Bandgap theory 18 1.5.3 Annealing property 20 1.5.4 Stress analysis 21 Chapter 2 Motivation 23 2.1 Highly Doped Tin Oxide Thin Film by APCVD 23 2.2 ITO Thin Film Prepared by Roll-to-roll Pulsed-DC Sputtering 24 2.3 ITO Thin Film on Flexible Glass 25 Chapter 3 Experimental 26 3.1 Highly Doped Tin Oxide Thin Film 26 3.2 ITO Thin Film Prepared by Roll-to-roll Pulsed-DC Sputtering 28 3.3 ITO Thin Film on Flexible Glass 31 Chapter 4 Results and Discussion 33 4.1 Highly Doped Tin Oxide Thin Film 33 4.1.1 Electrical property 33 4.1.2 Optical property 37 4.1.3 Material property 38 4.1.4 Theory discussion and material analysis 43 4.1.5 Bandgap narrowing 53 4.2 ITO Thin Film Prepared by Roll-to-roll Pulsed-DC Sputtering 61 4.2.1 Electrical property 61 4.2.2 Mechanism discussion 66 4.3 ITO Thin Film Deposited on Flexible Glass 70 4.3.1 The simulation 70 4.3.2 Electrical property 75 4.3.3 Optical property 83 4.3.4 Material property 85 4.3.5 Stress property 87 Chapter 5 Summary 93 References 94

    1. F. Martel., C. Briones, J. Fandiño, R. C. Rodrı́guez, P. B. Pérez, A. Z. Navarro, M. Z. Torres, and J. L. Peña,“Discharge Diagnosis and Controlled Deposition of SnOx:F Films by DC-Reactive Sputtering from a Metallic Tin Target”, Surf. Coat. Technol., 122, 136 (1999)
    2. C. Terrier, J. P. Chatelon, and J. A. Roger, “Electrical and Optical Properties of Sb:SnO2 Thin Films Obtained by The Sol-gel Method”, Thin Solid Films, 295, 95 (1997)
    3. B. Thangaraju, “Structural and Electrical Studies on Highly Conducting Spray Deposited Fluorine and Antimony Doped SnO2 Thin Films from SnCl2 Precursor”, Thin Solid Films, 402, 71 (2002)
    4. Z. Remes, M. Vanecek, H. M. Yates, P. Evans, and D. W. Sheel, “Optical Properties of SnO2:F Films Deposited by Atmospheric Pressure CVD”, Thin Solid Films, 517, 6287 (2009)
    5. P. Y. Liu, J. F. Chen, and W. D. Sun, “Characterizations of SnO2 and SnO2:Sb thin films prepared by PECVD”, Vacuum, 76, 7 (2004)
    6. H. Kim and A. Piqué, “Transparent Conducting Sb-doped SnO2 Thin Films Grown by Pulsed-Laser Deposition”, Appl. Phys. Lett., 84, 218 (2004)
    7. Y. Wang, T. Brezesinski, M. Antonietti, and B. Smarsly, “Ordered Mesoporous Sb-, Nb-, and Ta-Doped SnO2 Thin Films with Adjustable Doping Levels and High Electrical Conductivity”, ACS Nano, 3, 1373 (2009)
    8. Y. W. Kim, S. W. Lee, and H. Chen, “Microstructural Evolution and Electrical Property of Ta-doped SnO2 Films Grown on Al2O3(0001) by Metalorganic Chemical Vapor Deposition”, Thin Solid Films, 405, 256 (2002)
    9. H. Yanwei, Z. Qun, and L. Guifeng, “Transparent Conductive Tungsten-Doped Tin Oxide Polycrystalline Films Prepared on Quartz Substrates”, Semicond. Sci. Technol., 24, 015003 (2009)
    10. T. Minami, H. Sonohara, T. Kakumu et al., “Physics of Very Thin ITO Conducting Films with High Transparency Prepared by DC Magnetron Sputtering”, Thin Solid Films 270, 37 (1995)
    11. H. Kim, A. Pique, J. S. Horwitz et al., “Indium Tin Oxide Thin Films for Organic Light-Emitting Devices”, Appl. Phys. Lett., 74, 3444 (1999)
    12. M. J. Alam and D. C. Cameron, “Investigation of Annealing Effects on Sol-gel Deposited Indium Tin Oxide Thin Films in Different Atmospheres”, Thin Solid Films, 420, 76 (2002)
    13. S. Song, T. Yang, J. Liu et al., “Rapid Thermal Annealing of ITO Films”, Appl. Surf. Sci., 257, 7061 (2011)
    14. J. Herrero and C. Guillén, “Influence of Oxygen in the Deposition and Annealing Atmosphere on the Characteristics of ITO Thin Films Prepared by Sputtering at Room Temperature”, Vacuum, 80, 615 (2006)
    15. Please refer to corning incorporated web site: (http://www.corning.com/displaytechnologies/en/products/flexible.aspx)
    16. K. Bädeker, “Über Die Elektrische Leitfähigkeit und Die Thermoelektrische Kraft Einiger Schwermetallverbindungen”, Ann. Phys., 327, 749 (1907)
    17. E. Burstein, “Anomalous Optical Absorption Limit in InSb”, Phys. Rev., 93, 632 (1954)
    18. T. S. Moss, “The Interpretation of the Properties of Indium Antimonide”, Proc. Phys. Soc. London, Sect. B, 67, 775 (1954)
    19. G. Haacke, “New Figure of Merit for Transparent Conductors”, J. Appl. Phys, 47, 4086 (1976)
    20. K. L. Chopra, S. Major, D. K. Pandya, “Transparent Conductors- A Status Review”, Thin Solid Films, 102¸ 1 (1983)
    21. I. Hamberg, C. G. Granqvist, K. F. Berggren, B. E. Sernelius, and L. Engström, “Band-Gap Widening in Heavily Sn-doped In2O3”, Physical Review B, 30, 3420 (1984)
    22. T. Minami, “New n-Type Transparent Conducting Oxides”, MRS Bull., 25, 38 (2000)
    23. J. R. Bellingham, W. A. Phillips, C. J. Adkins, “Electrical and Optical-Properties of Amorphous Indium Oxide”, J. Phys. Condens. Matter., 2, 6207 (1990)
    24. H. Sato, T. Minami, S. Takata, and T. Yamada, “Transparent Conducting P-Type NiO Thin Films Prepared by Magnetron Sputtering”, Thin Solid Films, 236, 27 (1993)
    25. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor”, Science, 300, 1269 (2003)
    26. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306, 666 (2004)
    27. C. H. Liu, and X. Yu, “Silver Nanowire-based Transparent, Flexible, and Conductive Thin Film”, Nanoscale Res. Lett., 6:75 (2011)
    28. R. G. Gordon, “Criteria for Choosing Transparent Conductors”, MRS Bull., 25, 52 (2000)
    29. M. H. Ahn, E. S. Cho, and S. J. Kwon, "Effect of The Duty Ratio on The Indium Tin Oxide (ITO) Film Deposited by In-line Pulsed DC Magnetron Sputtering Method for Resistive Touch Panel”, Appl. Surf. Sci, 258, 1242 (2011)
    30. D. S. Ginley, H. Hosono, and D. C. Paine, “Handbook of Transparent Conductors”, (2010)
    31. T. Minami and T. Miyata, “Present Status and Future Prospects for Development of Non- or Reduced-Indium Transparent Conducting Oxide Thin Films”, Thin Solid Films, 517, 1474 (2008)
    32. H. Hosono, “Recent Progress in Transparent Oxide Semiconductors: Materials and Device Application”, Thin Solid Films, 515, 6000 (2007)
    33. M. Bugajski, and W. Lewandowski, “Concentration Dependent Absorption and Photoluminescence of n-Type InP”, J. Appl. Phys., 57, 521 (1985)
    34. G. Sanon, R. Rup, and A. Mansingh, “Band-gap Narrowing and Band Structure in Degenerate Tin Oxide SnO2 Films”, Phys. Rev. B, 44, 5672 (1991)
    35. C. Guillén and J. Herrero, “Structure, Optical, and Electrical Properties of Indium Tin Oxide Thin Films Prepared by Sputtering at Room Temperature and Annealed in Air or Nitrogen”, J. Appl. Phys., 101, 073514 (2007)
    36. A. M. Gheidari, F. Behafarid, G. Kavei, M. Kazemzad, “Effect of Sputtering Pressure and Annealing Temperature on the Properties of Indium Tin Oxide Thin Films”, Mater. Sci. Eng., B, 136 , 37 (2007)
    37. C. H. Ma, J. H. Huang, and H. Chen, “Residual Stress Measurement in Textured Thin Film by Grazing-Incidence X-ray Diffraction”, Thin Solid Films, 418, 73 (2002)
    38. K. H. Kim, S. W. Lee, D. W. Shin, and C. G. Park, “Effect of Antimony Addition on Electrical and Optical Properties of Tin Oxide Film”, J. Am. Ceram. Soc., 77, 915 (1994)
    39. Y. C. Lin, J.Y. Li, and W.T. Yen, “Low Temperature ITO Thin Film Deposition on PES Substrate Using Pulse Magnetron Sputtering”, Appl. Surf. Sci., 254, 3262 (2008)
    40. S. Y. Lee, and B. O. Park, “Structural, Electrical and Optical Characteristics of SnO2:Sb Thin Films by Ultrasonic Spray Pyrolysis”, Thin Solid Films, 510, 154 (2006)
    41. S. Shanthi, C. Subramanian, and P. Ramasamy, “Growth and Characterization of Antimony Doped Tin Oxide Thin Films”, J. Cryst. Growth, 197, 858 (1999)
    42. E. L. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, K.S. Bhupendra, and K. Neeraj, “Stress-Dependent Band gap Shift and Quenching of Defects in Al-Doped ZnO Films”, J. Phys. D: Appl. Phys., 43, 465402 (2010)
    43. Z. Zhao, D. L. Morel, and C. S. Ferekides, “Electrical and Optical Properties of Tin-doped CdO films Deposited by Atmospheric Metalorganic Chemical Vapor Deposition”, Thin Solid Films, 413, 203 (2002)
    44. A. A. Dakhel, “Transparent Conducting Properties of Samarium-doped CdO”, J. Alloys Compd., 475, 51 (2009)
    45. H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, Optical, and Structural Properties of Indium-Tin-Oxide Thin Films for Organic Light-Emitting Devices”, J. Appl. Phys., 86, 6451 (1999)
    46. D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. O. Yang, and B. Lewis, “A Study of Low Temperature Crystallization of Amorphous Thin Film Indium-Tin-Oxide”, J. Appl. Phys., 85, 8445 (1999)
    47. www.lightemitting diodes.org
    48. T. Sasabayashi, N. Ito, E. Nishimura, M. Kon, P.K. Song, K. Utsumi, A. Kaijo, and Y. Shigesato, “Comparative Study on Structure and Internal Stress in Tin-Doped Indium Oxide and Indium-Zinc Oxide Films Deposited by r.f. Magnetron Sputtering”, Thin Solid Films, 445, 219 (2003)
    49. J .A. Thornton and D. W. Hoffman, “Stress-Related Effects in Thin Films”, Thin Solid Films, 171, 5 (1989)
    50. E. H. Kim, C. W. Yang, and J. W. Park, “The Crystallinity and Mechanical Properties of Indium Tin Oxide Coatings on Polymer Substrates”, J. Appl. Phys., 109, 043511 (2011)
    51. J.C. Manifacier, “Thin Metallic Oxides as Transparent Conductors”, Thin Solid Films, 90, 297 (1982)
    52. Y. C. Lin, W.Q. Shi, and Z. Z. Chen, “Effect of Deflection on the Mechanical and Optoelectronic Properties of Indium Tin Oxide Films Deposited on Polyethylene Terephthalate Substrates by Pulse Magnetron Sputtering”, Thin Solid Films, 517, 1701 (2009)
    53. J. Zhang and L. Gao, “Synthesis and Characterization of Antimony-doped Tin Oxide (ATO) Nanoparticles by a New Hydrothermal Method”, Mater. Chem. Phys., 87, 10 (2004)
    54. F. Montilla, E. Morallón, A. De Battisti, S. Barison, S. Daolio, and L. Vázquez, “Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. 3. XPS and SIMS Characterization”, J. Phys. Chem. B, 108, 15976 (2004)
    55. X. Zhi, G. Zhao, T. Zhu, and Y. Li, “The Morphological, Optical and Electrical Properties of SnO2:F Thin Films Prepared by Spray Pyrolysis”, Surf. Interface Anal., 40, 67 (2007)

    QR CODE
    :::