跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃佳琪
Jia-Qi Huang
論文名稱: 摻銠鈦酸鋇單晶的氧化還原與光折變性質
指導教授: 張正陽
Jenq-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 89
語文別: 中文
論文頁數: 105
中文關鍵詞: 摻銠鈦酸鋇單晶氧化還原光致吸收光譜雙波混合光致衰減高溫導電率電荷轉移光折變
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 最後為瞭解氧偏壓大小對材料導電率的影響為何,同時找出不同氧偏壓和Defect Chemistry之間的一些關聯性。我們將一摻銠鈦酸鋇晶體進行不同還原程度的高溫導電率之量測,所使用的溫度分別為800℃、900℃與1000℃。由實驗的結果發現不同溫度下, 對 ( :高溫導電率, :氧偏壓)的圖形趨勢皆為V字型,且n-type及p-type區域的斜率分別非常接近理論值的 和 。


    摘要…………………………………………………………….1 圖表索引……………………………………………………….2 第一章前言……….……….……….……….………..……….5 第二章理論介紹……….……….……….……………………7 2.1引言……………………………………………………….7 2.2單載子單能階模型………………………………………10 2.3單載子雙能階模型………………………………………16 2.3.1空間電場與入射光強度的關係……………………18 2.3.2光導電與入射光強的關係…………………………19 2.3.3光致吸收……………………………………………22 2.3.4黑暗衰減……………………………………………23 2.4 Three-charge state model……………………………….23 2.4.1空間電場……………………………………………26 2.4.2光致吸收……………………………………………28 2.5 Defect Chemistry…………………………………….….29 2.5.1 Pure鈦酸鋇晶體…………………………………..29 2.5.2受體雜質所扮演的角色……………………………31 第三章光學性質之量測……….……….……….…………..38 3.1前言………………………………………………………38 3.2吸收光譜…………………………………………………39 3.2.1簡介………………………………………………...39 3.2.2實驗架設…………………………………………...40 3.2.3實驗結果…………………………………………...41 3.2.4討論………………………………………….……..42 3.3光致吸收光譜…………………………………………....43 3.3.1簡介………………………………………….……..43 3.3.2實驗架設…………………………………………...45 3.3.3實驗結果…………………………………………...45 3.3.4討論………………………………………….……..52 3.4結論………………………………………….…………...58 3.4.1吸收光譜…………………………………………...59 3.4.2光致吸收光譜……………………………………...60 第四章光折變性質之量測……….……….……….………..68 4.1前言………………………………………….……………68 4.2雙波混合………………………………………….………68 4.2.1簡介………………………………………….……..68 4.2.2實驗架設…………………………………………...69 4.2.3實驗結果…………………………………………...70 4.2.4討論………………………………………….……..77 4.3光致衰減………………………………………….……...82 4.3.1簡介………………………………………….……..82 4.3.2實驗架設…………………………………………...83 4.3.3實驗結果…………………………………………...84 4.3.4討論………………………………………………...87 4.4 結論………………………………………….…………..87 4.4.1雙波混合…………………………………………...87 4.4.2光致衰減…………………………………………...89 第五章高溫導電率之量測………………………………….97 5.1 前言……………………………………………………..97 5.2 實驗結果………………………………………….…….98 5.3 討論………………………………………….………….99 第六章結論………………………………………………...102 參考資料…………………………………………………….105

    1G. W. Ross, P. Hribek, R. W. Eason, M. H. Garret, D. Rytz, “Impurity enhanced self-pumped conjugation in the near infrared in blue BaTiO3,” Opt. Commun., 101, 60(1993).
    2A. Wechsler, M. B. Klein, C. C. Nelson, R. N. Schwartz, “Spectroscopic and photorefractive properties of infrared-sensitive rhodium-doped barium titanate,” Opt. Lett., 19, 536(1994).
    3J. Y. Chang, C. R. Chinjen, S. H. Duan, C. Y. Huang, and C. C. Sun, “Wavelength dependence of carrier-type in reduced BaTiO3:Rh,” Appl. Phys. lett., 72, 2199(1998).
    4N. V. Kukhtarev, V. B. Markov, S. G. Odoulove, M. S. Soshkin, and V. Vinetskii, “Holographic storage in electrooptic crystals I. Steady state,” Ferroelectrics, 22, 949(1979).
    5J. Feinberg, D. Heiman, A. R. Tangrary, Jr. and R. Hellwarth, “Photorefractive effects and light-induced charge migrating in barium titanate,” J. Appl. Phys., 51, 1297(1980).
    6F. P. Strohkendl, J. M. C. Jonathan and R. W. Hellwarth, “Hole-electron competition in photorefractive grating,” Opt. Lett., 11, 312(1986).
    7G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys., 59, 3363(1986).
    8P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive materials, ” J. Appl. Phys., 5, 4082(1991).
    9P. Tayebati, “Effect of shallow traps on electron-hole competition in semi-insulating photorefractive materials,” J. Opt. Soc. Am. B, 3, 415(1992).
    10K. Buse, E. Kratzig,”Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B, 61, 27(1995).
    11H. Kröse, R. Scharfschwerdt, O. F. Schirmer, H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B, 61, 1(1995).
    12K. Buse, “Light-induced charge transport processes in phtorefractive crystals I: Models and experimental methods,” Appl. Phys. B, 64, 273(1997).
    13H. —J. Hagemann, “Akzeptorionen in BaTiO3 und SrTiO3 und ihre Auswirkung auf die Eigenschaften von Titanatkeramiken,” Ph.D dissertation, Rheinisch-Westfalischen Technischen Hochschule, Aachen, Federal Republic of Germany(1980).
    14P. G. Schunemann, D. A. Temple, R. S. Hathcock, H. L. Tuller, H. P. Jessen, D. R. Gabbe and C. Warde, “Role of iron centers in the photorefractive effect in barium titanate,” J. Opt. Soc. Am. B5(8), 1685(1988).
    15N. —H. Chan, R. K. Sharma, D. M. Smyth, “Nonstoichiometry in Acceptor-Doped BaTiO3,” J. Am. Ceram. Soc., 64, 556(1981).
    16A. M. J. H. Seuter, “Defect Chemistry and Electrical Transport Properties of Barium Titanate, ” Philips Res. Rept. Suppl., 3(1974).
    17N. —H. Chan, D. M. Smyth, “Defect Chemistry of BaTiO3,” J. electrochem. Soc., 123(10), 1584(1976).
    18H. Kröse, R. Scharfschwerdt, A. Mazur, O. F. Schirmer, “A multichannel spectrometer for correlated EPR-optical absorption analysis of photochromic processes in crystals,” Appl. Phys. B, 67, 79(1998).
    19王智明, “不同溫度及波長之摻銠鈦酸鋇單晶性質研究,” (2000).
    20B. A.Wechsler, M. B. Klein, “Thermodynamic point defect model of barium titanate and application to the photorefractive effect,” J. Opt. Soc. B5, 1711(1988).

    QR CODE
    :::