| 研究生: |
王彥崴 Yen-Wei Wang |
|---|---|
| 論文名稱: |
使用多級維納濾波器的正交頻分多工毫米波系統之干擾消除 Interference Cancellation by Using Multistage Wiener Filters for mmWave OFDM Systems |
| 指導教授: |
陳永芳
Yung-Fang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 毫米波 、正交頻分多工 、干擾消除 、類比數位混和波束合成 、多級維納濾波器 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於目前使用的頻段愈來愈擁擠,5G 系統為了要達到更高的傳輸
速率,故開始物色頻率更高而且頻寬更寬的毫米波。所以近幾年來,
毫米波系統的設計開始逐漸受到重視。
本篇論文提出一個毫米波系統受到強烈干擾的情形下,如何消除掉
干擾對毫米波系統的影響。由於毫米波傳輸特性上的限制,必須使用
巨量天線才能達到一般訊號的傳輸距離。為了要減少硬體設計的複雜
度和能量消耗,所以要使用類比和數位混合的波束成形。接收到的訊
號會先經過類比端,在類比端就可以先做第一步處理,把一部份干擾
對系統的影響消除掉,處理過後的訊號會再進入數位端,數位端就可
以有效的把殘餘的干擾去除掉。廣義旁瓣消除器是一個可以應用於各
種干擾和雜訊消除問題的方法,我們將其應用於數位波束成形再結合
多級維納濾波器,在有限樣本之條件下,多級維納濾波器的降維運算
法可以減少計算複雜度並且提供可靠的效能。
Since the frequency bands currently used are becoming more crowded,
in order to achieve higher transmission rates, the 5G system has begun to
look for millimeter waves with wider bandwidth. Therefore, in recent years,
the design of millimeter wave systems has gradually received attention.
This thesis proposes schemes about how to cancel the effect of
interference on the millimeter wave system, while the millimeter wave
system suffers from strong interference. Due to the limitation of millimeter
wave transmission characteristics, a huge number of antennas must be used
to achieve a longer transmission distance. In order to reduce the complexity
and the energy consumption of the hardware design, the hybrid
beamforming technique that combines analog and digital beamforming
must be used. The received signal will go through the analog terminal first,
and the first step can be performed on the analog terminal to cancel part of
the effect of the interference on the system. The processed signal will then
enter the digital terminal, and the digital terminal can effectively suppress
the remaining interference. Generalized sidelobe canceller is a commonly
used method for interference and noise cancellation, and thus we apply it
in the digital beamforming combined with the multistage Wiener filter.
Under the condition of limited samples, the dimensionality reduction
algorithm of the multistage Wiener filter can reduce the computational
complexity and effectively provide better performance.
[1] T. Rappaport, Y. Xing, G. R. MacCartney, Jr., A. F. Molisch, E. Mellios,
and J. Zhang, ‘‘Overview of millimeter wave communications for
fifthgeneration (5G) wireless networks-with a focus on propagation
models,’’ IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6213–
6230, Dec. 2017.
[2] Y. Azar, G. N. Wong, K. Wang, R. Mayzus, J. K. Schulz, H. Zhao, F.
Gutierrez, D. Hwang, and T. S. Rappaport, ‘‘28 GHz propagation
measurements for outdoor cellular communications using steerable
beam antennas in New York City,’’ in Proc. IEEE Int. Conf. Commun.,
Jun. 2013, pp. 1–6.
[3] T.S. Rappaport, et.al, “Millimeter wave mobile communications for
5G cellular: it will work!” IEEE Access Journal, pp. 335-349, Vol. 1.,
No. 1, May 10, 2013.
[4] G. R. MacCartney, Jr. et al., “Path loss models for 5G millimeter wave
propagation channels in urban microcells,” in IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2013, pp. 3948–3953.
[5] S. Sun, G. R. MacCartney, Jr., and T. S. Rappaport, “Millimeter-wave
distance-dependent large-scale propagation measurements and path
loss models for outdoor and indoor 5G systems,” in Proc. 10th Eur.
Conf. Antennas Propag. (EuCAP), Apr. 2016, pp. 1–5.
[6] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun,
and F. Aryanfar, “Millimeter-wave beamforming as an enabling
technology for 5G cellular communications: theoretical feasibility and
prototype results,” IEEE Commun. Mag., vol. 52, pp. 106–113, Feb.
2014.
[7] R. W. Heath Jr., N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M.
Sayeed, “An overview of signal processing techniques for millimetre
wave MIMO systems,” IEEE J. Sel. Topics Signal Proc., vol. 10, pp.
436–453, Apr. 2016.
[8] A. Alkhateeb, J. Mo, N. G. Prelcic, and R. W. Heath Jr., “MIMO
precoding and combining solutions for millimeter wave systems,”
IEEE Comm. Mag., vol. 52, pp. 122–131, Dec. 2014.
[9] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design
for large-scale antenna arrays,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 3, pp. 501–513, Apr. 2016.
[10] J. Li, L. Xiao, X. Xu, and S. Zhou, “Robust and low complexity hybrid
beamforming for uplink multiuser mmWave MIMO systems,” IEEE
Commun. Lett., vol. 20, no. 6, pp. 1140–1143, Jun. 2016.
[11] G. Liu, L. Chen, W. Wang et al., “Hybrid beamforming based on
minimum mean square error for multi-user multi-data stream system,”
in 2018 IEEE 4th Inter. Conf. on Comput. and Commun. (ICCC), Dec.
2018, pp. 124–128.
[12] W. Zhang, X. Xia, Y. Fu, and X. Bao, “Hybrid and full-digital
beamforming in mmwave massive mimo systems: A comparison
considering low-resolution adcs,” China Communications, vol. 16, no.
6, pp. 91-102, Jun. 2019.
[13] T. Lin, J. Cong, Y. Zhu, J. Zhang, and K. B. Letaief, “Hybrid
beamforming for millimeter wave systems using the MMSE criterion,”
IEEE Trans. Commun., vol. 67, no. 5, pp. 3693–3708, May 2019.
[14] A. Morsali, S. Norouzi, and B. Champagne, “Single RF chain hybrid
analog/digital beamforming for mmwave massive-MIMO,” in 2019
IEEE Global Conference on Signal and Information Processing
(GlobalSIP), Nov 2019, pp. 1–5
[15] F. Sohrabi and W. Yu, “Hybrid analog and digital beamforming for
mmWave OFDM large-scale antenna arrays,” IEEE J. Sel. Areas
Commun., vol. 35, no. 7, pp. 1432–1443, Jul. 2017
[16] Y. Wang and W. Zou, “Low complexity hybrid precoder design for
millimeter wave MIMO systems,” IEEE Commun. Lett., pp. 1259-
1262, May 2019.
[17] Y. R. Ramadan, H. Minn, and A. S. Ibrahim, “Hybrid analog–digital
precoding design for secrecy mmWave MISO-OFDM systems,” IEEE
Trans. Commun., vol. 65, no. 11, pp. 5009–5026, Nov. 2017.
[18] J. Du,W. Xu, C. Zhao, and L. Vandendorpe, “Hybrid beamforming
design for multiuser massive MIMO-OFDM systems,” in Proc. 15th
Int. Symp. Wireless Commun. Syst., Aug. 2018, pp. 1–6.
[19] S. Haykin, Adaptive filter theory, New Jersey: Prentice, Hall, 2002
[20] J. S. Goldstein and I. S. Reed, “A new method of Wiener filtering and
its application to interference mitigation for communications,” in Proc.
IEEE MILCOM, vol. 3, Monterey, CA, Nov. 1997, pp. 1087–1091.
[21] J. S. Goldstein, I. S. Reed, and L. L. Scharf, “A multistage
representation of the Wiener filter based on orthogonal projections,”
IEEE Trans. Inf. Theory, vol. 44, pp. 2943–2959, Nov. 1998
[22] M. Honig and W. Xiao, “Adaptive reduced-rank interference
suppression with adaptive rank selection,” in Proc. MILCOM, Oct.
2000, pp. 747–751.
[23] G. Zhu, K. Huang, V. K. N. Lau, B. Xia, X. Li, and S. Zhang, “Hybrid
interference cancellation in millimeter-wave MIMO systems,” in Proc.
IEEE Int. Conf. Commun. Syst., Dec. 2016, pp. 1–6.
[24] J.-H. Lee, M.-J. Kim, and Y.-C. Ko, “IA-based hybrid beamforming
design in MIMO interference channel,” in IEEE Adv. Commun.
Technol. Inter. Conf., Feb. 2017, pp. 358-361.
[25] H. Chahrour, S. Rajan, R. Dansereau, and B. Balaji, “Hybrid
beamforming for interference mitigation in MIMO radar,” in Proc.
IEEE Radar Conf., Apr. 2018, pp. 1005–1009.
[26] S.-K. Yong, P. Xia, and A. Valdes-Garcia, 60 GHz technology for Gbps
WLAN and WPAN: From theory to practice. Wiley, 2010.
[27] H. Xu, V. Kukshya, and T. S. Rappaport, “Spatial and temporal
characteristics of 60-GHz indoor channels,” IEEE J. Sel. Areas
Commun., vol. 20, no. 3, pp. 620–630, Apr. 2002.
[28] M. L. Honig and W. Xiao, “Performance of reduced-rank linear
interference suppression,” IEEE Trans. Inform. Theory, vol. 47, July
2001.
[29] X. Yang, Y. Sun, Y. Liu, and J. Zhang, “Derivative constraint-based
householder multistage Wiener filter for adaptive beamforming,” in
IEEE IET Inter. Radar Conf., Apr. 2013, pp.1-5.
[30] Y.-F. Chen and C.-S. Wang, “Adaptive antenna arrays for interference
cancellation in OFDM communication systems with virtual carriers,”
IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1837–1844, Jul. 2007.