| 研究生: |
陳韋伃 Wei-Yu Chen |
|---|---|
| 論文名稱: |
以車載藍光雷射建構國道鋪面抗滑值與二維紋理之關聯模型 Establishing Correlation Model between 2D Pavement Texture and Skid Number in Taiwan Freeway Using Vehicle Mounted Blue-Ray Laser CCD |
| 指導教授: |
陳世晃
Shih-Huang Chen 林志棟 Jyh-Dong Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 鋪面紋理 、藍光雷射 、鋪面抗滑能力 |
| 外文關鍵詞: | Pavement Texture, Blue-Ray Laser, Pavement Skid Resistance |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋪面抗滑能力為影響行車安全主要因素之一,因此針對鋪面抗滑力進行例行性檢測與監控是相當重要的,本研究利用自行開發之智慧型藍光2D Laser CCD鋪面檢測車,於國道三號關西段北上89k-83k外車道收集紋理資料,並與鎖輪式抗滑拖車量測之抗滑值(Skid Number, SN)進行關聯性分析,根據線性迴歸分析結果發現藍光雷射鋪面檢測車於量測時速為90kph時擁有最佳關聯性,相關係數(γ)=0.9為高度正相關;利用遺傳規劃法進行非線性預測其驗證階段之R2=0.7為高度解釋能力,表示於高速量測之紋理值與鋪面抗滑值具高度解釋程度,誤差量評估部分,訓練階段之平均絕對誤差百分比(Mean Absolute Percentage Error, MAPE)為2.75%;驗證階段則降低至2.59%,表示後續若作為預測使用,則可產生較高的準確度。本研究亦探討102年國道一號鋪面抗滑值(SN)與A2類事故傷亡數之相關性分析,根據傷亡數累積事故百分比發現當SN值大於48時至少可避免68%的A2類車禍事故發生率,SN值大於52.5可避免95%的A2類車禍事故發生率,當SN大於56.5時則可避免99.7%的A2類事故,藉由此A2類事故預防率區間訂定一國道鋪面抗滑門檻值,並建構台灣國道事故預防之鋪面抗滑門檻值與鋪面紋理值關聯預測模型。
Pavement skid resistance plays an important role in safety driving. Therefore, the routine inspection and monitoring for pavement skid resistance is very important. This study used the self-developed intelligent Blu-ray 2D Laser CCD pavement inspection vehicle to collect the pavement texture data of outer lane at National freeway No.3 Guanxi section (89k-83k), and analyzed the correlation with the Skid Number (SN) of Locked-Wheel Trailer. The results of linear regression showed that the relevance has its best result at 90kph, the correlation coefficient (γ)=0.9.The results of Genetic Programming (GP) mentioned that the validation R2 is 0.7 which has high explanatory power, it represents that the correlation between pavement skid number and pavement texture by using high speed measurement is highly related. The amount of error evaluation, the Mean Absolute Percentage Error (MAPE) of training period is 2.75%, and validation period decrease to 2.59%, it means that the accuracy is high when used to predict future values.This study also investigated the correlation between pavement skid number (SN) at National Freeway No.1 and the number of A2 class accident casualties in 2013. According to the cumulative percentage of accident casualties, data showed that at least 68% A2 accident incidence can be avoided when SN is greater than 48, and 95% A2 accident incidence can be dodged when SN is greater than 52.5, 99.7% A2 accident incidence can be precluded when SN is greater than 56.5. A threshold of freeway pavement skid number can be set up according to the A2 accident prevention rate, and establish the forecast model between pavement skid number of A2 accident prevention and pavement texture in Taiwan freeway.
ASTM Standard E274/E274M-15, (2015). “Standard Test Method for Skid Resistance of Paved Surfaces Using a Full-Scale Tire”, American Society of Testing and Materials, ASTM International, Pennsylvania, USA.
ASTM Standard E1845-15, (2015). “Standard Practice for Calculating Pavement Marcotexture Mean Profile Depth”, American Society of Testing and Materials, ASTM International, Pennsylvania, USA.
ASTM Standard E965-15, (2015). “Standard Test Method for Measuring Pavement Macrotexture Depth Using a Volumetric Technique1”, American Society of Testing and Materials, ASTM International, Pennsylvania, USA.
A. Benedetto., (2002). “A decision support system for the safety of airport runways: the case of heavy rainstorms”, Transportation Research, Part A., 36, pp.665-682.
Colleen McGovern., Peter Rusch., and David A. Noyce., (2011) “State Practices to Reduce Wet Weather Skidding Crashes”, Federal Highway Administration Office of Safety, Washington, DC.
F.G. Praticò., and R. Vaiana., (2015). “A study on the relationship between mean texture depth and mean profile depth of asphalt pavements”, Construction and Building Materials, Vol.101, Part.1, pp.72–79.
Gabriele, B., Andrea, S., Fabrizio, G., and Claudio, L., (2012) “Laser Scanning on Road Pavements a New Approach for Characterizing Surface Texture”, Sensors, Vol. 12 Issue 7, pp.9110.
Hao, X. -L., Sha, A. -M., Sun, Z. -Y., Li, W., and Zhao., H. -W., (2016). “Evaluation and Comparison of Real-Time Laser and Electric Sand-Patch Pavement Texture-Depth Measurement Methods”, J. Transp. Engr., 10.1061/ (ASCE) TE. 1943-5436. 0000842, 04016022.
Hall, J. W., Smith, K. L., Glover, L. T., Wambold, J. C., Yager, T. J., and Rado, Z., (2009). “Guide for pavement, contractor’s final report for NCHRP project 01-43”.
ISO 13473-1, (1997). “Characterization of pavement texture by use of surface profiles - Part 1: Determination of Mean Profile Depth”.
ISO 13473-3, (2002). “Characterization of pavement texture by use of surface profiles - Part 3: Specification and classification of profilometers”.
José M. Pardillo Mayora., and Rafael Jurado Pi˜na., (2009). “An assessment of the skid resistance effect on traffic safety under wet-pavement conditions”, Accident Analysis and Prevention, Vol. 41, No.4.
J. Laurent., J. F. Hébert., D. Lefebvre., and Y. Savard., (2014). “Using 3D Laser Profiling Sensors for the Automated Measurement of Road SurfaceConditions”, 7th RILEM International Conference on Cracking in Pavements, pp. 157–167.
K. Anupam., S. K. Srirangam., A. Scarpas., and C. Kasbergen., (2013) “Influence of Temperature on Tire-Pavement Friction: Analyses”, Journal of the Transportation Research Board, NO.2369, pp.114-124.
Lindenmann, H. P., (2006). “New findings regarding the significance of pavement skid resistance for road safety on Swiss freeways”, Journal of Safety Research, Vol. 37, pp.395-400.
Milton, J., V. Shankar, F. Mannering., (2008). “Highway Accident Severities and the Mixed Logit Model: an Exploratory Empirical Analysis” Accident Analysis and Prevention, Vol. 40, No.1, pp. 260-266.
Oliver, J.W.H., (2009). “Factors Affecting the Correlation of Skid Testing Machines and a Proposed Correlation Framework” Road and Transportation Research, Vol.18, pp.38-48.
Plotkin, K J., Montroll, M L., and Fuller, W R., (1980). “The generation of tire noise by air pumping and carcass vibration” Proceeding of the International Conference Noise Control Engineering, Inter-Noise 80 Vol.1, pp.273-276.
Peter Kotek., and Matúš Kováč., (2015). “Comparison of valuation of skid resistance of pavements by two device with standard methods”, Procedia Engineering, Vol.111, pp.436-443.
Wu, H., Zhang, Z., Long, K., and Michael, R.M., (2014). “Considering Safety Impacts of Skid Resistance in Decision-making Processes for Pavement Management”, 93rd Transportation Research Board.
內政部營建署,「市區道路管理維護與技術規範手冊研究」,2002年。
內政部警政署,「道路交通事故處理規範 」,2003年。
交通部頒,「公路路線設計規範」,2011年。
江建良,統計學,第五版,普林斯頓國際有限公司,新北市,第421-437頁,2011年。
何煖軒、邱垂德、陳順興、林志棟,「以刨磨工法提昇國道剛性路面行車安全性之探討」,中華民國第八屆運輸安全研討會,第217-225頁,2001年。
李國楨,「以國際摩擦指數評估鋪面抗滑性之研究」,碩士論文,中華大學土木與工程資訊學系碩士專班,2006年。
余承晏,「應用鋪面快速高程檢測資料於抗滑能力評估之初擬」,碩士論文,國立臺灣大學土木工程學系,2013年。
林嘉宏,「鋪面紋理與摩擦力關聯性之初步探討」,碩士論文,逢甲大學運輸科技與管理學系,2008年。
林哲緯,「智慧型紋理量測系統應用於柔性鋪面之驗證」,碩士論文,逢甲大學運輸科技與管理學系,2011年。
林伯儒,「静動態鋪面紋理量測方式於現行規範之限制與未來發展性探討」碩士論文,逢甲大學運輸科技與管理學系,2012年。
徐貫倫,「二維鋪面紋理模型與摩擦力關聯性之初步探討」,碩士論文,逢甲大學運輸科技與管理學系,2009年。
蔡鎮宇,「鋪面雷射掃描儀應用於鋪面績效分析」,碩士論文,國立臺灣大學土木工程學系,2011年。
鍾閎文,「傳統單點雷射與2D雷射應用於平坦度之比較研究」,碩士論文,國立中央大學土木工程學系,2011年。
鄭以揚,「以藍光雷射高速檢測紋理之探討」 ,碩士論文,逢甲大學運輸科技與管理學系,2014年。
陳威東,「交通量與氣候影響國道抗滑值與交維方案之研究」,碩士論文,國立中央大學土木工程學系,2014年。
陳昶憲、鍾侑達、方唯鈞,「遺傳規劃在河川演算之應用」,台灣水利,第五十三卷,第四期,第39-45頁,2005年。
黃俊英,多變量分析,第七版,中國經企研究所,臺北市,第255-260頁,2000年。
劉育臻,「車載高速2D紋理量測系統之可行性評估」,碩士論文,逢甲大學運輸科技與管理學系,2010年。
鍾艾蓉,「研擬有效預測鋪面抗滑之鋪面紋理指標」,碩士論文,國立臺灣大學土木工程學系,2012年。