跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳翔
Hsiang Chen
論文名稱: 以微模型實驗探討蒸發對於孔隙介質內殘留和入滲流體互動之影響
The effect of evaporation on the interaction between resident and infiltrating fluids in porous media
指導教授: 李明旭
Ming Syu-Li
許少瑜
Shao Yiu-Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 84
中文關鍵詞: 孔隙微模型新舊水
外文關鍵詞: pore, micro-model, new old water
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 土壤與地下水汙染的汙染物可能留存在非飽和層而未滲入地下水,殘存汙染物質和入滲雨水的互動將影響地表作物用水及地下水質。
    本研究利用以Pore doublet model和以Micro X-Ray CT所掃描之真實孔隙剖面影像為孔隙幾何製成的微模型,研究在不同的蒸發時間 (不同初始水量) 下新舊液體的交替過程,觀察殘留液體與新液體之間的互動機制。
    研究發現在雙通道微模型實驗中,液體殘留越多,越不容易在新液體注入時被排退。在真實孔隙微模型實驗中,薄膜水的減少,造成舊液體殘餘增加。介質結構越密集越容易產生孤立區,進而阻擋新液體地進入。
    由於雙通道與真實孔隙的孔隙結構不同,殘餘液體形成機制也不同,造成兩組實驗結果有顯著差異,顯示過度簡化模型可能產生完全不同的研究結論。


    Once the surface pollutants leak into soil and subsurface, they can remain in the unsaturated layer (vadose zone) without being permeated into groundwater. The interaction between the residual contaminants and infiltrating rainwater or irrigation water will affect the water usage of crops and the groundwater quality.
    In this study, by using the micromodels with patterns of pore doublet and real 2D pore geometry scanned by Micro X-Ray CT, I studied the alternation process of the old and new fluids subject to different evaporation times (with different initial water volumes) and observed the interaction mechanism between residual and incoming liquids.
    The results found that, in the pore-doublet micro-model experiment, the more liquid remains, the less likely it is to be discharged when the new liquid was infused. With micromodel of 2D pore geometry, the reduction of film water increased the old liquid residues. The denser the media structure is, the more likely it is to produce isolated areas, which blocked the entrance of new liquids.
    Because of the difference of opening structure between the pore doublet and the real pore geometry, the formation mechanism of the residual liquid will be different, contributing to the substantial differences in the experimental outcomes of the two groups, indicating that the oversimplified model may produce completely different study conclusions.

    摘要 I 圖目錄 VI 第一章、 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的 4 1.4 研究流程 5 第二章、 相關理論 7 2.1 界面張力(INTERFACIAL TENSION) 7 2.2 毛細壓力 7 2.3 薄膜流(FILM FLOW) 10 2.4 HAINES JUMP 10 第三章、 實驗方法 12 3.1 流道設計 12 3.2 微模型母模製作 14 3.3 微模型改質和封裝 20 3.4 微模型之觀察與記錄 23 第四章、 結果與討論 26 4.1 雙通道微模型實驗 26 4.1.1 無蒸發過程 27 4.1.2 有蒸發過程 29 4.1.3 蒸發1分鐘 29 4.1.4 蒸發5分鐘 32 4.1.5 蒸發10分鐘 33 4.1.6 舊酒精殘餘量與新酒精注入之關係變化 36 4.1.7 討論 38 4.2 實際孔隙模型實驗 39 4.2.1 無蒸發過程 43 4.2.2 有蒸發過程 45 4.2.3 第一次酒精注入 47 4.2.4 第一次空氣注入 49 4.2.5 第二次酒精注入 51 4.2.6 第二次酒精注入整體分析 58 4.2.7 第二次空氣注入 60 4.2.8 第三次酒精注入 61 4.2.9 第三次酒精注入整體分析 64 4.2.10 第三次空氣注入 66 4.2.11 討論 66 第五章、 結論與建議 69 5.1 結論 69 5.2 建議 69 參考文獻 71

    [1] Bear, J. (2013). Dynamics of fluids in porous media.
    [2] Berg, S., H. Ott, S. A. Klapp, A. Schwing, R. Neiteler, N. Brussee, A. Makurat, L. Leu, F. Enzmann & J.-O. Schwarz (2013) Real-time 3D imaging of Haines jumps in porous media flow. Proceedings of the National Academy of Sciences, 110, 3755-3759.
    [3] Berkowitz, B. (2014). Interchange of Infiltrating and Resident Water in Partially Saturated Media. In Transport and Reactivity of Solutions in Confined Hydrosystems, 55-66.
    [4] Davis, E. L. & B. K. Lien. (1993). Laboratory study on the use of hot water to recover light oily wastes from sands. Environmental Protection Agency, Ada, OK (United States). Robert S. Kerr Environmental Research Lab.
    [5] Gervais, T., J. El-Ali, A. Günther & K. F. Jensen (2006) Flow-induced deformation of shallow microfluidic channels. Lab on a Chip, 6, 500-507.
    [6] Gouet‐Kaplan, M., A. Tartakovsky & B. Berkowitz (2009) Simulation of the interplay between resident and infiltrating water in partially saturated porous media. Water resources research, 45.
    [7] Jo, B.-H., L. M. Van Lerberghe, K. M. Motsegood & D. J. Beebe (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Journal of microelectromechanical systems, 9, 76-81.
    [8] Jokinen, V., P. Suvanto & S. Franssila (2012) Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics, 6, 016501.
    [9] Kirchner, J. W., X. Feng & C. Neal (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature, 403, 524-527.
    [10] Klaus, J., E. Zehe, M. Elsner, C. Külls & J. McDonnell (2013) Macropore flow of old water revisited: experimental insights from a tile-drained hillslope. Hydrology and Earth System Sciences, 17, 103.
    [11] Neethirajan, S., I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal & F. Lin (2011) Microfluidics for food, agriculture and biosystems industries. Lab on a Chip, 11, 1574-1586.
    [12] Schowalter, T. T. (1979) Mechanics of secondary hydrocarbon migration and entrapment. AAPG bulletin, 63, 723-760.
    [13] Sklash, M., M. Stewart & A. Pearce (1986) Storm Runoff Generation in Humid Headwater Catchments: 2. A Case Study of Hillslope and Low‐Order Stream Response. Water Resources Research, 22, 1273-1282.
    [14] White, R. (1985). The influence of macropores on the transport of dissolved and suspended matter through soil. In Advances in soil science, 95-120.

    QR CODE
    :::