跳到主要內容

簡易檢索 / 詳目顯示

研究生: 游才銘
Tsai-Ming Yu
論文名稱: Gibson壓密理論速算公式的研究
The reseach of handy formula of Gibson''s consolidation theory
指導教授: 李顯智
Hin-Chi Lei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 90
中文關鍵詞: 速算公式
外文關鍵詞: Handy formula
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    Terzaghi於1925年所提出的單向度壓密理論其優點是解析解易求得;缺點則是低估了超額孔隙水壓,Gibson等人便根據Terzaghi理論的缺失來進行修正,於1967年提出飽和黏土的壓密方程式,為一非線性的偏微分方程式。其優點為假設條件較符合土壤壓密的實際情況;缺點則是解析解不容易求得。不過由最近發表的文獻中,可知已能將Gibson理論的薄黏土層的單向度壓密方程式予以線性化,進而求出其近似解。
    本研究主要是利用差分法來求出Gibson薄、厚土層壓密方程式的近似解,並且跟Terzaghi壓密理論與速算公式的結果作一比較,以提供作為工程設計時的一個參考。


    Abstract
    Gibson and his co-workers proposed a nonlinear theory of consolidation in 1967, which was derived by conditions more realistic than those applied in the Terzaghi’s theory. Even if the analytic solutions to the nonlinear theory are difficult to obtained, some progress has been made recently using a special type of linearization. A handy formula has thus derived which can calculate the settlement quickly.
    This research try to compare this handy formula with the Gibson’s theory as well as the Terzaghi’s theory. And some positive results has been obtained.

    目錄 頁次 摘要 I 英文摘要 II 目錄 III 圖目錄 VI 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究方法 2 1-3 論文內容 3 第二章Gibson-England-Hussy單向度壓密理論簡介 4 2-1 前言 4 2-2 控制方程式的推導 4 2-3 Gibson-England-Hussy薄土層的控制方程式推導 7 2-4 Gibson-England-Hussy方程式中材料函數的選取 9 第三章 Gibson-England-Hussy方程式的線性化 12 3-1 變數轉換 12 3-2 變數角色轉換 14 3-3 新自變數q的物理意義 16 第四章 薄土層GEH壓密方程式的求解 18 4-1 移動邊界問題描述 18 4-2 GEH壓密方程式的近似解法 21 4-3 GEH壓密方程速算公式的推導 24 4-4 速算公式與其他壓密理論之比較 31 4-4-1 Terzaghi壓密方程式 32 4-4-2 Gibson 厚土層壓密方程式 32 4-4-3 Gibson薄土層壓密方程式 33 第五章 實例分析與討論 35 5-1 不同載重之比較 35 第六章 各種壓密條件下的結果比較 45 6-1 不同載重之比較 45 6-2 不同土體高度之比較 54 6-3 不同初始孔隙比之比較 62 6-4 不同載重下GEH薄厚土層方程之比較 67 第七章 結論與建議 76 7-1 結論 76 7-2 建議 76 附錄 78 參考文獻 88

    參考文獻
    [1] Lee,K.,“Discussion on Terzaghi’s Concept of Consoli-
    dation,” Geotechnique, Vol.34,No.1,pp. 131-132(1984).
    [2] Richart, F.E.,“A Review of the Theories for Sand Dr-
    ains,” Proc.Am.Soc.civ.Engrs,SM3,No.1301,(1957).
    [3] Lo,K.Y.,“Discussion on Rowe, Measurement of the Coe-
    fficient of Consolidation of Lacustrine Clay,” Geote-
    chnique, Vol 10,No 1,pp. 36-39(1960).
    [4] Janbu, N.,“Consolidation of Clay Layers Basedon Non-
    Linear Stress-Strain,”Proc.6th Int. Conf.Soil Mech.Vol.
    2,pp. 83-87(1965).
    [5] Barden,L. and Berry,P.L.,“Consolidation of Normally
    Consolidated Clay,” Pro.Am.Soc.Civ Engrs, SM5 ,No.4481,
    pp.15-35(1965)
    [6] Davis,E.H.and Raymond,G.P.,“A Non-Linear Theory of
    Consolidation,” Geotechnique,Vol 15,No.2,pp.161-173
    (1965).
    [7] Gibson,R.E.,England,G.L.and Hussey,M.J.L.,“The Theory
    of One Dimensional Consolidation of Saturated Clay: I.
    Finite Non-Linear Consolidation of Thin Homogeneous Layers,” Geotechnique,Vol 17,pp.261-273(1967).
    [8] Gibson, R.E., Schiffman,R.L.and Cargill,K.W.,“The The
    -ory of One Dimensional Consolidation of Saturated Clay:
    Finite Non Linear Consolidation of Thick Homogeneous
    Layers,” Can.Geotech.J﹒,Vol 18,pp.280-293(1981).
    [9] Lei,H.C. and Chang,H.W.,“A List of Hodograph Trans
    -formations and Exactly Linearizable Systems,”The Ch
    -inese Journal of Mechanics,Vol 12,No.3,September
    1996.
    [10] Poskitt, T.J.,“The Consolidation of Saturated Clay
    with Variable Permeability and Compressibility,” Geo
    -technique,Vol 19,No 2, pp. 234-252 (1969).
    [11] Feldkamp,J.R.,“Permeability Measurement of Clay Pas
    -tes by a Non-Linear Analysis of Transient Seepage Co
    -nsolidation Tests,” Geotechnique,Vol. 39,No.1,pp.141
    -145(1989).
    [12] Znidarcic,D.,Schiffman,R.L.,Pane,V.,Croce,P.,Ko,H.Y.
    and Olsen,H.W.,“ The Theory of One Dimensional Con
    -solidation of Saturated Clays: Constant Rate of
    Deformation Testing and Analysis,” Geotechnique,Vol
    36,No 2,pp.227-237(1986).
    [13] Feldkamp,J.R.,Swartzendruber,D.and Shainberg,I.,“U
    -se of an Automated Tension Cell to Measure Physical
    Properties of Consolidation System,” Colloid Polymer
    Sci., Vol 261,pp. 277-285(1983).
    [14] Croce,P.,Pane,V.,Znidarcic, D.,Ko, H.Y.,Olsen,H.W. and
    Schiffman,R.L.,“Evaluation of Consolidation Theories
    by Centrifugal Modelling,” Proc. Conf.Applications of
    Centrifugal Modelling to Geotechnical Design, Manchest
    -er University, pp. 380-401(1984).
    [15] Mikasa,M.and Takada, N.,“Selfweight Consolidation of
    Very Soft Clay by Centrifuge,” In Sedimentation /Conso
    -lidation Models ,pp.121-140(eds R.N.Yong and F.C. Tow
    -nsend).New York :American Society of Civil Engineers
    (1984).
    [16] Schiffman,R.L.,Pane,V. and Gibson ,R.E.,“The Theory
    of One-Dimensional Consolidation of Saturated Clays:
    an Overview of Nonlinear Finite Strain Sedimentation and
    Consolidation,”In Sedimentation / Consolidation Mode-
    ls,pp 1-29(eds R.N.Yong and F.C. Townsend).New York: Am
    -erican Society of Civil Engineers(1984).
    [17] Chakarbarty, J.,“Theory of Plasticity,”McGraw-Hill,
    New York(1987).
    [18] Hill,R.,“The Mathematical Theory of Plasticity,”Oxfo
    -rd University Press,London(1950).
    [19] Whiteam,G.B.,“Linear and Nonlinear Waves,” Wiley,New
    York(1974).
    [20] Courant,R. and Friedrich,K.O.,“Supersonic Flow and
    Shock Waves,” Springer-Verlag, New York(1948).
    [21] Courant,R.and Hibbert,D.,“Methods of Mathemmatical
    Physics(Vol. 2),” Inter-science Publishers, New York
    (1962).
    [22] Garabedian,P.R.,“Partial Differential Equation,”Che
    -lsea Publishing Company,New York(1986).
    [23] M.R.Spiegel,p252,formula 128

    QR CODE
    :::