跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃冠球
Guan-Ciou Huang
論文名稱: 以RFSoC平台實現毫米波寬頻OFDM傳收器
Implementation of Wideband OFDM mmWave Transceiver with RFSoC Platform
指導教授: 陳逸民
Yih-Min Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 136
中文關鍵詞: 正交分頻多工傳收器射頻單晶片系統毫米波里德所羅門碼摺積碼
外文關鍵詞: OFDM, Transceiver, RFSoC, mmWave, Reed Solomon code, Convolution code
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線通訊技術的進步,5G已經開始蓬勃發展,在物聯網與車用電子甚至是遠端手術等,對於傳輸速度以及資料量的需求越來越高。在本論文中,使用高傳輸速度與高資料量的收發機模組,透過多路並行資料傳遞的方式,實現寬頻的OFDM訊號,並將其應用毫米波段進行傳輸。
    在硬體中以Verilog硬體描述語言設計,收發機模組參考LTE DownLink架構下的OFDM調變系統,搭配DVB-T架構之通道邊解碼規格,進行修改與擴充。
    開發傳輸速度與資料量高的可靠收發機模組,並在RFSoC平台實現,達成毫米波段之傳發,最後比較其在中頻與毫米波段的通道響應影響。


    With the advancement of wireless communication technology, 5G has begun to flourish. In the Internet of Things, automotive electronics and even remote surgery, the demand for transmission speed and data quantity is getting higher and higher. In this paper, a transceiver module with large data quantity and high transmission speed is used to realize broadband OFDM signal through multiple parallel data transmission, and apply it to millimeter wave band for transmission.
    Designed with Verilog hardware description language in the hardware. The transceiver module refers to the OFDM modulation system under the LTE DownLink architecture along with the channel side decoding specification under the DVB-T architecture to modify and expand.
    Develop the reliable transceiver module with high transmission speed and large data quantity , and finally realized it on the RFSoC platform to achieve transmission in the millimeter wave band.Eventually compare its channel response effects in the IF and millimeter wave bands.

    中文摘要 iv Abstarct v 目錄 vi 圖目錄 x 表目錄 xvii 第一章 緒論 1 1-1 研究動機與背景 1 1-2 章節簡介 2 第二章 寬頻OFDM發射與接收 3 2-1 通道編碼器(Encoder) 4 2-2 里德所羅門碼編碼器(Reed Solomon Encoder) 5 2-3 外部交錯器(Outer Interleaver) 7 2-4 摺積碼編碼器(Convolution Encoder) 9 2-5 位元排列器(Bit Permutation) 9 2-6 星座圖映射(QAM Mapping) 10 2-7 參考訊號(Pilot) 11 2-8 快速傅立葉轉換(Fast Fourier Transform) 12 2-9 循環字首(Cyclic Prefix) 13 2-10 符元時序同步(Symbol Timing Synchronization) 14 2-10-1 符元時序偏移討論 14 2-10-2 符元時序同步原理 14 2-11 載波頻率同步(Carrier Frequency Synchronization) 16 2-11-1 載波頻率誤差之影響 16 2-11-2 載波頻率同步原理 19 2-12 通道估測(Channel Estimation) 20 2-12-1直接決策通道估測 20 2-12-2取樣後維持通道估測 21 2-13 通道解碼器(Decoder) 21 2-14 軟式決策器(Soft Decision) 22 2-15 位元解排列器(Bit De-permutation) 25 2-16 摺積碼解碼器(Convolution Decoder) 25 2-17 封包同步(Detect Packet Header) 26 2-18 外部解交錯器(Outer De-Interleaver) 27 2-19 里德所羅門碼解碼器(Reed Solomon Decoder) 27 第三章 寬頻OFDM發射機硬體實現 28 3-1 通道編碼器硬體架構 29 3-1-1 里德所羅門碼編碼器 29 3-1-2 外部交錯器 31 3-1-3 摺積碼編碼器 32 3-2 星座圖映射器 34 3-3 訊框架構器 35 3-4 參考訊號與有效資料置入 35 3-5 子載波映射器 37 3-6 快速反傅立葉轉換器 39 3-6-1 IFFT與FFT關係 41 3-6-2 碟型運算器 42 3-6-4 坐標軸數位旋轉計算器 43 3-6-5 旋轉因子 44 3-6-6 多路位元反轉排序 45 3-7 循環前綴摻生器 46 第四章 寬頻OFDM接收機硬體實現 48 4-1 符元時序同步器(Symbol Timing Synchronizer) 48 4-1-1 延遲相關器 48 4-1-2 峰值檢測器 50 4-1-3 符元同步器 52 4-2 載波頻率同步器(Carrier Frequency Synchronizer) 53 4-3 快速傅立葉轉換器 55 4-4 解子載波映射器 56 4-5 解訊框架構器 57 4-6 通道估測與等化 59 4-6-1 參考訊號通道響應 60 4-6-2 線性內插器 61 4-6-3 通道等化 62 4-7 摺積碼編碼器 64 4-8 通道解碼器硬體架構 65 4-9 軟式決策器 66 4-10 摺積碼解碼器 68 4-11 偵測同步封包 69 4-12 外部解交錯器 70 4-13 里德所羅門碼解碼器 71 第五章 RFSoC平台之實現 77 5-1 SoC(系統單晶片) 77 5-2 RFSoC(射頻系統單晶片) 77 5-3 RFSoC平台 78 5-3-1 RFSoC DAC/ADC 79 5-3-2 RFSoC Nyquist Zone 81 5-3-3 RFSoC DAC/ADC資料之擺放 81 5-3-4 RFSoC DAC/ADC 操作介面 84 5-3-5 RFSoC 平台之系統 85 5-4 毫米波段之升降頻器與頻率合成器 87 5-4-1 毫米波段之頻率合成器 87 5-4-2 毫米波段之升頻器 88 5-4-3 毫米波段之降頻器 89 第六章 RFSoC平台模擬與硬體實現結果 92 6-1 中頻之實驗結果 92 6-1-1 發射機訊號之頻譜圖 92 6-1-2 發射機訊號之解析 94 6-1-2 接收機訊號之星座圖 98 6-1-3 接收機之靈敏度 99 6-1-4 系統之錯誤率比較 105 6-2 毫米波之實驗結果 106 6-3 系統使用資源及速度 111 第七章 結論 115 參考文獻 116

    [1] Chang-Yueh. Liu, “Design and Implementation of Wideband OFDM Transceiver with SDR Platform, ” National Central University, Master’s thesis, Dec. 2019.
    [2] Tzu-Chun. Liu, “Implementation of High Throughput Codec for Wideband OFDM Tranceiver with SDR Platform, ” National Central University, Master’s thesis, Dec. 2019.
    [3] C.H. Kuo, “Design and Implementation of Viterbi Decoder for Multi-Rate Convolutional Code in DVB-T System, ” National Central University, Master’s thesis, Jul. 2010.
    [4] Yih-Min Chen, Hsin-Yin Wu, and Mong-Yo Lu. “Decision-directed polynomial model-based channel estimation for ofdm systems with scattered-pilots”. in ITS Telecommunications (ITST), 2012 12th International Conference on, pages 748-752. IEEE, 2012.
    [5] Jae-Sun Han; Tae-Jin Kim; Chanho Lee, “High performance Viterbi decoder using modified register exchange methods", Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on Volume 3, 23-26 May 2004 Page(s):III – 553-6 Vol.3.
    [6] D. A. F. Ei-Dib and M. I. Elmasry, “Low-power register-exchange Viterbi decoder for high-speed wireless communications" IEEE ISCAS, Vol. 5, pp. V737~740, May. 2002.
    [7] Feygin, G.; Gulak, P, “Architectural tradeoffs for survivor sequence memory management in Viterbi decoder", Communications, IEEE Trans. On Communications , Vol 41, Issue 3, March 1993 Page(s):425~429.
    [8] T. K. Truong, M. –T. Shih, I. S. Reed, and E. H. Satorius, “ A VLSI design for a trace-back Viterbi decoder," IEEE Trans. on Communications, Vol. 40, No.3, pp.616~624, Mar. 1992.
    [9] Ivan M. Onyszchuk, “Truncational Length for Viterbi Decoding." IEEE Trans. On Communication, Vol.COM-39, pp.1023~1026, July 1991.
    [10] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI architectures for metric normalization in the Viterbi algorithm,"IEEE ICC, Vol. 4, pp.1723-1728, Apr.1990.
    [11] F. Weng, C. Yin, and T. Luo,” Channel estimation for the downlink of 3gpp lte systems,” in Network Infrastructure and Digital Content, 2010 2nd IEEE International Conference on, pages. 1042-1046, IEEE, 2010.
    [12] Q. Wang, C. Mehlfuhrer, and M. Rupp, “Carrier frequency synchronization in the downlink of 3gpp lte,” in 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pages. 939–944, IEEE, 2010.
    [13] A. Peled and A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms,” in Acoustics, Speech, and Signal Pro- cessing, IEEE International Conference on ICASSP’80., vol. 5, pages. 964–967, IEEE, 1980.
    [14] J. E. Volder, “The cordic trigonometric computing technique,” IRE Transac- tions on Electronic Computers, no. 3, pages. 330–334, 1959.
    [15] M.-X. Chang and Y. T. Su, “Model-based channel estimation for ofdm signalsin rayleigh fading," Communications, ” IEEE Transactions on, vol. 50, no. 4,pp. 540-544, 2002.
    [16] H. G. Myung, J. Lim, and D. J. Goodman, “Peak-to-average power ratio ofsingle carrier fdma signals with pulse shaping, ” in Personal, Indoor and MobileRadio Communications, 2006 IEEE 17th International Symposium on, pp. 1-5,IEEE, 2006.
    [17] A. Sohl, T. Frank, and A. Klein, “Channel estimation for dft precoded ofdma with blockwise and interleaved subcarrier allocation,”in Proc. International OFDM Workshop 2006
    [18] X. Wang and K. R. Liu, “Channel estimation for multicarrier modulation sys-tems using a time-frequency polynomial model," IEEE transactions on commu-nications, vol. 50, no. 7, pp. 1045-1048, 2002.

    QR CODE
    :::