| 研究生: |
廖博輝 Bo-huei Liao |
|---|---|
| 論文名稱: |
電漿蝕刻機制於深紫外及透明導電膜之研究 Investigation of plasma etching mechanism in DUV and TCO coatings |
| 指導教授: |
李正中
Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 電漿蝕刻 、氟化鋁 、濺鍍 、紫外鍍膜 |
| 外文關鍵詞: | sputtering, DUV coatings, plasma etching mechanism, aluminum fluoride |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究利用電漿蝕刻機制,鍍製深紫外及透明導電薄膜。
對深紫外鍍膜,我們成功以便宜鋁靶材在室溫鍍製氟化鋁薄膜,在低濺鍍功率(30W)時並通入適當比例的O2/CF4氣體可鍍出光學性質佳且粗糙度小的氟化鋁薄膜,為了工業界的應用我們增大濺鍍功率到200W,在較佳的O2和CF4的比例下,濺鍍速率比30W大7.43倍且在波長190nm到700nm的消光係數都小於6.8×10-4,此值遠小於只通CF4的消光係數 (4.4×10-3),此外膜質呈現非晶質結構且粗糙度只有0.8nm,所有薄膜的殘餘應力為壓應力在濺鍍功率為160W時可得到最小的壓應力0.068 GPa,我們運用此製程在鋁膜上鍍製氟化鋁薄膜成功的將193nm 波長下的反射率從88.2% 提高到91.2%, 此值大於最近發表論文的90.3%
電漿蝕刻機制也應用於透明導電膜(FTO),實驗中以純錫靶並通入不同比例的CF4/O2氣體來改善薄膜的光學和電性質,從光譜資訊中得知此新製程可提高紫外到可見光的穿透率,當通入適當比例的CF4/O2氣體,在波長400 nm到800nm消光係數可小於1.5×10-3,而折射率在550nm只減少0.21,在較佳的鍍膜參數並在真空中以350℃退火一小時,可得電阻率1.23×10-3 Ω-cm,且平均400 nm到700nm的絕對穿透率為88.48%。
從上述的結果中可知,此新製程在鍍製深紫外和透明導電膜的薄膜品質,優於傳統熱蒸鍍和濺鍍,且此新製程有極大的潛力可應用於工業生產上。
In this research, the plasma etching mechanism has been applied to DUV and transparent conductive oxide coatings.
For DUV coating, aluminum fluoride thin films have been deposited by plasma etching deposition with an aluminum target onto a room temperature substrate. For low sputtering power (30W), the best optical quality and smallest surface roughness was obtained when the AlF3 thin films were coated with O2:CF4 (12sccm:60sccm). To increase the deposition rate for industrial application, the sputtering power was increased to 200W with the best ratio of O2/CF4 gas. The results show that the deposition rate at 200W sputtering power was 7.43 times faster than that at 30W sputtering power and the extinction coefficients deposited at 200W were less than 6.8×10-4 at the wavelength range from 190nm to 700nm.To compare the deposition with only CF4 gas at 200W sputtering power, the extinction coefficient of the thin films improve from 4.4×10-3 to 6×10-4 at the wavelength of 193nm. In addition, the structure of the film deposited at 200W was amorphous-like with a surface roughness of 0.8nm. All of the residual stresses were compressive and their trends were consistent with the refractive indices. The lowest compressive stress (0.068 GPa) was obtained when the AlF3 films were prepared at 160W sputtering power. High reflective lens of aluminum with an AlF3 protective layer have been deposited by PED. The reflectance in 193nm increased from 88.2% to 91.2% and the reflectance was higher than that in recent published paper (90.3%)
For transparent conductive oxide, Fluorine-doped tin oxide films have been deposited by plasma etching deposition with Sn target. Various ratios of CF4/O2 gas were injected to enhance the optical and electrical properties of films. The transmittance result shows that the novel deposition can raise the transmittance in the UV to visible range. The extinction coefficient decreased as the CF4 to O2 ratios increased and the extinction coefficient was lower than 1.5×10-3 in the range from 400 nm to 800nm when CF4 to O2 ratios was 0.375. The refractive index decreased as the CF4 to O2 ratios increased and the largest decreased amount at 550nm was 0.21. The resistivity of fluorine-doped SnO2 films deposited by PED after annealing at 350℃ in vacuum for one hour was 1.23×10-3 Ω-cm which was 40 times smaller than undoped SnO2 (4.55×10-2 Ω-cm) and the absolute average transmittance from 400nm to 800nm was 88.48% .
All of the results indicate that this new and simple process is better than conventional thermal evaporation and sputtering when depositing DUV and TCO films and it offers excellent potential for the application of manufacture in the real-world industry.
1.1 Robert E. Huffman Selected Papers on Ultraviolet Optics and Technology, SPIE Press, (1993).
1.2 Minami, Tadatsugu. Semicond. Sci. Technol. 20 S35-S44 (2005).
1.3 Http://geology.com/articles/indium.shtml.
1.4 F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. T. Hart, and T. L. Lichtenstein, Appl. Opt. 24, 496-500 (1985).
1.5 W. Heitmann, Thin Solid Films 5, 61-67 (1970).
1.6 C. C. Lee, M. C. Liu, M. Kaneko, K. Nakahira, and Y. Takano, Appl. Opt. 44, 7333-7338 (2005).
1.7 S. Güster, D. Ristau, and S. Bosch, Proc. SPIE 4099, 299-310 (2001).
1.8 S. Niisaka, T. Saito, J. Saito, A. Tanaka, A. Matsumoto, M. Otani, R. Biro, C. Ouchi, M. Hasegawa, Y. Suzuki, and K. Sone, Appl. Opt. 41, 3242-3247 (2002).
1.9 O. R. Wood II, H. G. Craighead, J. E. Sweeney, and P. J. Maloney, Appl. Opt. 23, 3644-3649 (1984).
1.10 Y. Taki, Vacuum 74, 431-435 (2004).
1.11 T. Yoshida, K. Nishimoto, K. Sekine, and K. Etoh, Appl. Opt. 45, 1375-1379 (2006).
1.12 Holland L Vacuum Deposition of Thin Film (New York: wiley) 492, (1958).
1.13 Vossen JL Phys Thin Film 9 1, (1977).
1.14 Haacke G Ann. Res. Mater Sci.7 73, (1977).
1.15 Jarzebski ZM and Marton JP J. Electrochem. Soc.123 199C, 299C, 333C, (1976).
1.16 Manifacier JC Thin Solid Film 90 297,(1982).
1.17 Jarzebski ZM Phys. Status Solidi Films 102 1, (1982).
1.18 Chopra KL, Major S and Pandya DK Thin Solid Film 102 1, (1983).
1.19 Hamberg I and Granqvist CG J. Apply. Phys. 60 R 123, (1986).
1.20 H. Kim, A. Piqué, Appl. Phys. Lett. 84 218, (2004).
1.21 S.R. Vishwakarma, J.P. Upadhyay, H.C. Prasad, Thin Solid Films 176 99, (1989).
1.22 J.P. Upadhyay, S.R. Vishwakarma, H.C. Prasad, Thin Solid Films 16 77, (1988).
1.23 B. Stjerna, E. Olsson, C.G. Granqvist, J. Appl. Phys. 76 3797, (1994).
1.24 P.K. Manoj, B. Joseph, V.K. Vaidyan, D.S.D. Amma, Ceramic International
33 273 (2007).
1.25 S. Suporthina, M.R. De Guire, Thin Solid Films 371 1(2000).
1.26 H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publishing, Bristol, (1995).
1.27 C. Arias, L.S. Roman, T. Bugler, R. Tomfool, M.S. Moravia, I.A. Hummel, Thin Solid Films 371 29(2000).
1.28 A. Rakhshani, Y. Makdish, H. Ramazaniyan, J. Appl. Phys. 83 (1998) 1049.
1.29 A. Martinez, D.R. Acosta, Thin Solid Films 483 107(2005).
1.30 B. Thangaraju, Thin Solid Films, 402 71 (2002).
1.31 D. Das, R. Banerjee, Thin Solid Films 147 321 (1987).
1.32 O.K. Varghese, L.K. Malhotra, J. Appl. Phys. 87 7457 (2000).
1.33 Y. Onuma, Z. Wang, H. Ito, M. Nakao, K. Kamimura, Jpn. J. Appl. Phys.
37 963 (1998).
1.34 B.P. Howson, H. Barakova, A.G. Spencer, Thin Solid Films 196 315 (1991).
1.35 H. Kim, R.C.Y. Auyeung, A. Piqué, Thin Solid Films 516 5052 (2008).
2.1 Milton Ohring, Material Science of Thin Films Deposition and Structure, Second Edition, Chap.7, Academic Press. (2002).
2.2 B.A. Movchan and A. V. Demchishin, phys.Met. Metallogr. 28, 83 (1969).
2.3 J.A. Thornton, Ann.Rev. Mater.Sci. 7, 239 (1977).
2.4 Edwards, P. P.; Porch, A.; Jones, M.O.; Morgan, D. V.; Perks, R. M. Dalton Trans. 2995-3002 (2004).
2.5 H. Brooks, Adv. Elect. Electron Phys. 7, 85, (1955).
2.6 R. B. Dingle, Phil. Mag. 47, 831, (1982).
2.7 B. K. Ridley, J. Phys. C: Solid State Phys. 10, 1589 (1977).
2.8 K. Ellmer, J. Phys. D: Appl. Phys. 34, 3097 (2001).
2.9 W. Heitmann, Thin Solid Films 5, 61-67 (1970).
2.10 C. C. Lee, M. C. Liu, M. Kaneko, K. Nakahira, and Y. Takano, Appl. Opt. 44, 7333-7338 (2005).
2.11 S. Güster, D. Ristau, and S. Bosch, Proc. SPIE 4099, 299-310 (2001).
2.12 S. Niisaka, T. Saito, J. Saito, A. Tanaka, A. Matsumoto, M. Otani, R. Biro, C. Ouchi, M. Hasegawa, Y. Suzuki, and K. Sone, Appl. Opt. 41, 3242-3247 (2002).
2.13 O. R. Wood II, H. G. Craighead, J. E. Sweeney, and P. J. Maloney, Appl. Opt. 23, 3644-3649 (1984).
2.14 Y. Taki, Vacuum 74, 431-435 (2004).
2.15 Michael A. Lieberman and Allan J. Lichtenberg, Principle of Plasma Discharges and Materials Processing, Chap.15.
2.16 O Gabriel1, S Stepanov and J Meichsner, J. Phys. D: Appl. Phys. 40 7383–7391 (2007)
3.1 J.M. Lerner and A. Thevenon, ‘‘The Optics of Spectroscopy’’, HORIBA Jobin Yvon Inc.
3.2 Chi, Chang H., Ed., ‘‘Periodic Structures, Gratings, Moire Patterns and Diffraction Phenomena’’, SPIE Proc. 240 (1980).
3.3 Goldstein, S. A. and Walters, J. P., ‘‘A Review of Considerations for High Fidelity Imaging of Laboratory Spectroscopic Sources Parts 1 and 2’’, Spectrochimica
ACTA, 31B, 201¬316, (1976).
3.4 James, J. F. and R. S. Sternburg, ‘‘The Design of Optical Spectrometers ’’,
Chapman & Hall Ltd., London, England, (1969).
3.6 Lerner, Jeremy M., Ed., ‘‘Theory and Fabrication of Periodic Structures,
Diffraction Gratings and Moire Phenomena’’, SPIE Proc. 503 (1984).
3.7 J. C. Manifacier, J. Gasiot, and J. P. Fillard, ‘‘A simple method for the
determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002-1004 (1976).
3.8 M.R.Baklanov and K.P.Mogilnikov, ‘‘Non-destructive characterization of porous low-K dielectric films,” Microelectronic Eng., 64, 1-4, 335 (2002).
3.9 R. M. A. Azzam and N. M. Bashara, ‘‘Elliposometry and Polarized Light,” North-Holland Publishing Company (1979).
3.10 www.sopra-sa.com , ‘‘Optical Solutions Spectroscopic Ellipsometer,” SOPRA Inc.
3.11 A.R. Forouhi, I. Bloomer, “Optical Properties of Crystalline Semiconductors and Dielectrics”, Phys. Rev. B, vol. 38, No. 3, 1865-74, July, (1988)
3.12 Bill George and Peter Mclntyre, ‘‘Analytical Chemistry by Open Learning,”
John Wiley and Son.
3.13 Donald L. Pavia, Gary M. Lampman and Geore S. Kriz, ‘‘Instroduction to Spectroscopy,” Thomson Learning, Inc.
3.14 C. Suryanarayana and M. grant Norton, ‘‘X- Ray Diffraction A Practical Approach,” Plenum Press.
3.15 Introduction to Instrumentation (Material Analysis Instrument),精密儀器發展中心出版
3.16陳力俊, ‘‘材料電子顯微鏡學,” 精密儀器發展中心出版
3.17 Introduction to Instrumentation (Material Analysis Instrument),精密儀器發展中
心出版
3.18 SEM原理及應用, 捷東股份有限公司
3.19 http://www.jeol.com/tabid/92/Default.aspx
3.20 Introduction to Instrumentation (Material Analysis Instrument),精密儀器發展中
心出版
3.21 Dieter K. Schroder, ‘‘Semiconductor Material and Device Characterization,” A John Wiley and Sons, Inc.
3.22 Ming Yen Lin, Chia-Seng Chang, Wenlung Li, ‘‘An Introduction to the Principle of Atomic Force Microscope (I) ,” 科儀新知第二十七卷第二期 (94.10)
3.23 Ming Yen Lin, Chia-Seng Chang, Wenlung Li, ‘‘An Introduction to the Principle of Atomic Force Microscope (II) ,” 科儀新知第二十七卷第二期 (94.12)
3.24 Paul West, ‘‘AFM University Introduction to Atomic Force Microscopy,”
http://www.afmuniversity.org/index.cgi?CONTENT_ID=1
3.25 NanoScope Software 7.20 User Guide, Veeco Instruments Inc. (2007)
4.1 F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. T. Hart, and T. L. Lichtenstein, Appl. Opt. 24, 496–500 (1985).
4.2 W. Heitmann, Thin Solid Films 5, 61–67 (1970).
4.3 C.-C. Lee, M.-C. Liu, M. Kaneko, K. Nakahira, and Y. Takano, Appl. Opt. 44, 7333–7338 (2005).
4.4 M.J. Kushner, I. A model for the etching of Si and SiO2 in CnFm/H2 and CnFm/O2 plasmas,” J.Apply. Phys. 53(4), 2923-2938 (1982).
4.5 Keiichiro Iwase, P Christopher Selvin, Gen Sato, and Toshihiro Fujii, J. Phys. D: Appl. Phys. 35, 1934-1938 (2002)
4.6 H. J. Koa, H. J. Leea, K. M. Leeb, and C. K. Choi, J. Ceram.Process. Res. 7 172 (2006).
4.7 M. Zukic, D. G. Torr, J. F. Spann, and M. R. Torr, Appl. Opt.29 (1987) 4284.
4.8 M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, Appl. Opt. 45, 1368-1374 (2006).
4.9 M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, Thin Solid Films 492/1-2, 45-51 (2005).
4.10 Minghong Yang, Alexandre Gatto, and Norbert Kaiser, Appl. Opt. 45,178-183 (2006).
4.11 B. O''Regan, M. Grätzel, Nature 353 (1991) 737.
4.12 H. Kim, G.P. Kushto, C.B. Arnold, Z.H. Kafafi, A. Pique, Appl. Phys. Lett. 85 (2004) 464.
4.13 T. Fukano, T. Motohiro, T. Ida, H. Hashizume, J. Appl. Phys. 97 (2005) 084314.
4.14 W. Brütting, M. Meier, M. Herold, S. Krag, M. Schwoerer, Chem. Phys. 227 (1998) 243.
4.15 D.R. Acosta , E.P. Zironi , E. Montoya , W. Estrada, Thin Solid Films 288 ( 1996) 1-7
4.16 A.A.Yadav, E.U.Masumdar, A.V.Moholkar, K.Y.Rajpure, C.H.Bhosale, Physica B 404 (2009) 1874-1877
4.17 A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, J. Appl. Phys. 83 (2), 15 January 1998