跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱贊嘉
Zan-Jia Jhu
論文名稱: 利用覆晶技術結合近彈道傳輸光檢測器與共平面波導耦合線濾波器在K頻段非線性光電混波應用
The Flip-Chip Bonding integrated Near-Ballistic Transport UTC Photodiode and Coplanar Couple Line Filter at K Band for optoelectronic mixing
指導教授: 許晉瑋
JIN-WEI SHI
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 50
中文關鍵詞: 共平面耦合線濾波器近彈道傳輸光檢測器
外文關鍵詞: planar coupled line filter, Near-Ballistic Uni-Traveling-Carrier photodiode
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光電混頻器在微波-光纖系統扮演相當重要的角色,因其不需要昂貴複雜的鎖相LO信號,只需利用中心節點的光LO信號,就可以輕鬆達到發射與接收端同步的目的,因此在本論文中我們提出藉由覆晶技術結合近彈道傳輸單載子光檢測器,與共平面波導耦合線濾波器之光電混頻器,利用該光檢測器特有之非線性特性結合帶通濾波器,我們可以同時達到低的內部轉換損耗(4.3dB)、與高的調制頻寬(>10GHz)。


    The optoelectronic mixer plays an important role in radio-over-fiber system due to the LO signal of emitter and receiver can be simply synchronized through optical LO signal from base station without expensive and complex phase-lock electrical LO signal. Therefore, we demonstrated an optoelectronic mixer by binding the near-ballistic uni-traveling-carrier photodiode (BUTC-PD) and planar coupled line filter together through flip-chip assembly technology. Low internal up-conversion loss as low as 4.3dB, and wide up-conversion bandwidth (>10GHz) have been achieved simultaneously.

    Abstract I 摘要 II 目錄 III 圖目錄 V 表目錄 VIII 第一章 序論 1 § 1.1光纖通訊發展趨勢 1 § 1.2 微波–光纖系統基地台介紹 4 §1.3 論文動機與架構 7 第二章 原理 8 §2.1 單載子傳輸光偵測器工作原理 8 §2.2 彈道傳輸單載子光偵測器之磊晶層設計 12 § 2.3 彈道傳輸單載子光偵測器之幾何結構 16 § 2.4 濾波器原理 18 第三章 元件製程步驟 23 § 3.1彈道傳輸單載子光偵測器製作流程 23 § 3.2 濾波器製作流程 31 第四章 量測系統與量測結果分析 35 § 4.1 Heterodyne-Beating & Up conversion 量測系統之架設35 §4.2量測結果 37 第五章 結論與未來展望 47 參考資料 48

    [1]David M. Pozar, “Microwave Engineering” ,John Wiley & Sons,2005.
    [2] http://www2.nict.go.jp/is/t822/108/prj/Phase-1/2rcs/2rcs.html
    [3] Hirata A., Sahri N., Ishii H., Machida K., Yagi S., Nagatsuma T.
    APMC’2000, Dec., pp. 70-73, 2000.
    [4] Masahiro Tsuchiya, Takeshi Hoshida, “Nonlinear Photodetection Scheme and Its System Applications to Fiber-Optic Millimeter-Wave
    Wireless Down-Links”, IEEE Trans. Microw. Theory Tech., vol. 47, NO. 7,pp.1342-1350, July 1999.
    [5]Jae-Young Kim, Chang-Soon Choi, Woo-Young Choi, Hideki Kamitsuna, Minoru Ida, and Kenji Kurishima, “Characteristics of InP–InGaAs HPT-Based Optically Injection-Locked Self-Oscillating Optoelectronic Mixers and Their Influence on Radio-Over-Fiber System Performance”, IEEE Photon. Technol. Lett., vol. 19, NO. 3,pp.155-157, FEBRUARY 1, 2007.
    [6] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, July/August 2004.
    [7]N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, March, 1998.
    [8] T. Ishibashi, “Nonequilibrium Electron Transport in HBTs,” IEEE Trans. Electron Devices, vol. 48, pp. 2595 - 2605, Nov. 2001.
    [9] T. Ishibashi and Y. Yamauchi, “A Possible Near-Ballistic Collection in an AlGaAs/GaAs HBT with a Modified Collector Structure,” IEEE Trans. on Electron Devices, vol. 35, pp. 401-404, April, 1988.
    [10] Hsu-Feng Chou, Yi-Jen Chiu, and John E. Bowers, “Standing-Wave Enhanced Electroabsorption Modulator for 40-GHz Optical Pulse Generation, ” IEEE Photon. Technol. Lett., vol. 15, NO. 2,pp.215-217, February 2003.
    [12] Y.-S. Wu, J.-W. Shi, J.-Y. Wu, F.-H. Huang, Y.-J. Chan, Y.-L. Huang, and R. Xuan, “High Performance Evanescently Edge Coupled Photodiodes with Partially p-Doped Photo-absorption Layer at 1.55

    QR CODE
    :::