| 研究生: |
黃信銘 Huang Sin Ming |
|---|---|
| 論文名稱: |
超塑性5083與非超塑性5083鋁合金鈑片應用於手機殼氣壓成型之研究 Study on Gas Forming of Superplastic 5083 and non-Superplastic 5083 Aluminum Alloy Sheet for Cell Phone Shell |
| 指導教授: | 李雄 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 快塑成型 、5083鋁合金 、金屬手機殼 |
| 外文關鍵詞: | QPF, 5083 aluminum alloy, metal cellphone shell |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對以快塑成型(Quick Plastic Forming, QPF)的製程應用於金屬手機殼的外殼成型進行探討。實驗採用了一般的商用5083及超塑性的5083等不同性質的鋁合金鈑片進行不同時間下的手機殼快塑成型,藉由各種不同的機械性質及成型性測試,來探討快塑成型的製程是否具有製作手機殼的優勢,並評估哪種鈑材較適合作為手機殼快塑成型的材料。
研究結果顯示在單一次的快塑成型上影響能否完全成型的原因為模具的設計,而非材料本身的機械性質,且成型後各材料間的機械性質並沒有太大的差異。綜合研究結果可推斷,為了在經濟及時間上有效的利用快塑成型製程來製作手機殼的話,在材料的選擇上採用一般的商用5083鈑片即可。
This thesis focuses on the application of quick plastic forming (QPF) process to the molding of metal cellphone shell. The experiments used different type of commercial 5083 and superplastic 5083 aluminum alloy sheet to carry out cellphone shell quick plastic forming at different times. Through a variety of mechanical properties and formability tests, to discuss the advantages of the quick plastic forming process to produce a cellphone shell, and which kind of sheet are more suitable as material for the quick plastic forming of cellphone shell.
The results show that the effect of one stage quick plastic forming on the complete forming is the design of the mold, rather than the mechanical properties of material, and the mechanical properties of material is not much difference before and after forming. Based on the above results, it can be inferred that in order to make cellphone shell efficiently using the quick plastic forming process in aspect of economy and time, commercial 5083 sheet is the better choose for material.
[1] EET(2017), “2016年全球智慧型手機賣15億支、成長5%”, http://www.eettaiwan.com/news/article/20170216NT21-worldwide-sales-of-smartphone-2016
[2] EET(2017), “2017年第一季全球智慧型手機銷售成長9%”, https://www.eettaiwan.com/news/article/20170525NT21-2017Q1-worldwide-smartphone-sales
[3] EET(2017), “新興市場需求帶動2017年第二季4G智慧型手機成長”, https://www.eettaiwan.com/news/article/20170824NT21-4G-Smartphones-demands-in-Emerging-Markets
[4] EET(2017), “2017年第三季全球智慧型手機銷售量成長3%”, https://www.eettaiwan.com/news/article/20171207NT21-Top5-Smartphone-Vendors-Achieved-Growth-in-2017Q3
[5] 每日頭條, “Gartner:2017年Q4全球智慧型手機銷量下滑5.6%”, https://kknews.cc/digital/v2zp484.html
[6] 金屬中心(2015), “鋁合金於3C機殼發展趨勢”, http://www.mirdc.org.tw/FileDownLoad%5CIndustryNews/2016711114151254.pdf
[7] F. Yang & W. Yang, “Kinetics and size effect of grain rotations in nanocrystals with rounded triple junctions”, Scripta Materialia, Vol 61, pp.919-922, 2009.
[8] C. M. Hu, C. M. Lai, P. W. Kao, N. J. Ho, J. C. Huang, “Quantitative measurements of small scaled grain sliding in ultra-fine grained Al–Zn alloys produced by friction stir processing”, Materials Characterization, Vol 61, pp.1043-1053, 2010.
[9] R. Verma, A. K. Ghosh, S. Kim, C. Kim, “Grain refinement and superplasticity in 5083 Al”, Materials Science and Engineering: A, Vol 191, pp.143-150, 1995.
[10] A. K. Mukherjee and R. S. Mishra, “Superplasticity”, Encyclopedia of Materials: Science and Technology (Second Edition), pp.8977-8981, 2001.
[11] L.D. Hefti, “Commercial Airplane Applications of Superplastically Formed AA5083 Aluminum Sheet”, Journal of Materials Engineering and Performance, Vol 16, pp.136-141, 2007.
[12] P. E. Krajewski, J. G. Schroth, “Overview of Quick Plastic Forming Technology”, Materials Science Forum, Vol 551-552, pp.3-12, 2007.
[13] R. Boissiere, S. Terzi, J. J. Blandin, L. Salvo, “Quick-Plastic forming: similarities and differences with Super-Plastic forming”, 6th EUROSPF Conference, pp.1-2, 2009.
[14] J. Carpenter and M. T. Smith, “Quick Plastic Forming of Aluminum Sheet Metal”, Energy Efficiency and Renewable Energy, 2005.
[15] P. E. Krajewski and J. G. Schroth, Superplastic Forming of Advanced Metallic Materials: Methods and Applications, Woodhead Publishing Limited.,2011.
[16] 孫稟厚, “鎂合金AZ31細晶薄板片拉伸性質與氣壓成形特性研究”, 國立中央大學, 博士論文, pp.21-22, 2011.
[17] F. Ozturk, S. Toros, S. Kilic, “Evaluation of tensile properties of 5052 type aluminum-magnesium alloy at warm temperatures”, Archives of Materials Science and Engineering, Vol 34, pp.95-98, 2008.
[18] J.S. Vetrano, C.A. Lavender, C.H. Hamilton, M.T. Smith and S.M. Bruemmer, “SUPERPLASTIC BEHAVIOR IN A COMMERCIAL 5083 ALUMINUM ALLOY”, Scripta Metallurgica et Materialia, Vol 30, pp.565-570, 1994.
[19] M.A. Kulas, P.E. Krajewski, J.R. Bradley, E.M. Taleff, “Forming Limit Diagrams for AA5083 under SPF and QPF Conditions”, Materials Science Forum, Vol 551-552, pp.129-134, 2007.
[20] P. A. Friedman and S. G. Luckey, “Superplastic Forming of Advanced Metallic Materials: Methods and Applications”, Woodhead Publishing Limited, pp.72-82, 2011.
[21] D. R. Askeland, P.P. Fulay, W.J. Wright, “The Science and Engineering of Materials, 6e”, Cengage Learning, 2011.
[22] B. Wang, X.H. Chen, F.S. Pan, J.J. Mao, Y. FANG, “Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy”, Transactions of Nonferrous Metals Society of China, Vol 25, pp.2481-2489, 2015.
[23] 維基百科, “鋁合金”, https://zh.wikipedia.org/wiki/%E9%8B%81%E5%90%88%E9%87%91
[24] P. T. Summers, Y. Chen, C. M. Rippe, B. Allen, A. P. Mouritz, S. W. Case, B. Y. Lattimer, “Overview of aluminum alloy mechanical properties during and after fires”, Fire Science Reviews, 2015.
[25] 張暘青, “民航客機機翼前緣整流罩之超塑成形材料研究”, 國立中央大學, 碩士論文, pp.2-3, 2011.
[26] W. D. Callister and D. G. Rethwisch, “Fundamentals of Materials Science and Engineering, Fifth Edition”, New York: John Wiley & Sons, Inc, 2000.