| 研究生: |
鍾政宇 Cheng-Yu Chung |
|---|---|
| 論文名稱: |
天然物(+)-Pericosine A, (-)-Pericosine C, (+)-Pericosine E的合成研究 |
| 指導教授: |
侯敦仁
Duen-Ren Hou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 非鏡像選擇性 、鈀催化 |
| 外文關鍵詞: | [α-(Alkoxycarbonyl)vinyl]aluminium reaction, allylic substitution |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究是以D-Ribose作為起始物合成目標天然物(+)-Pericosine A, (-)-Pericosine C和(+)-Pericosine E。主要的反應有Wittig反應和Swern氧化反應。以[α-(Alkoxycarbonyl)vinyl]aluminium作為具有非鏡像選擇性的羰基加成反應可得到重要的中間產物8a和8b。(+)-Pericosine A可在化合物8a進行環合置換(Ring-Closing Metathesis)反應後,參考Stevenson教授的合成方法而得。化合物8a經由環合置換反應合環、鈀催化的allylic substitution後可得到(-)-Pericosine C。(+)-Pericosine E應亦可藉由鈀催化的allylic substitution而得,然而尚在進行中。
Successfully synthesizing natural product (+)-Pericosine A, (-)-Periciosine C,(+)-Pericosine E was the aim. The main reactions we used are Wittig reaction, Swern oxidation, [α-(Alkoxycarbonyl)-vinyl]aluminum reaction and Palladium-catalyzed allylic substitution. Diastereomeric intermediate 8a and 8b can be synthesized via [α-(Alkoxycarbonyl)-vinyl]aluminum reaction which the ratio is 4 to 1. (+)-Pericosine A was obtained by compound 8a through Ring-Closing metathesis then directly referring to Prof. Stevenson’s method. (-)-Pericosine C was obtained by compound 8a via Ring-Closing Metathesis and Palladium-catalyzed allylic substitution successfully. (+)-Pericosine E might can be synthesized by Palladium-catalyzed allylic substitution, but still doing effort right now.
第五章參考文獻
1. Lritani, M.; Yamada, T.; Minoura, K.; Matsumura, E.; Yamori, T.; Tsuruo, T.; Numata, A. Tetrahedron Lett. 1997, 38, 8215−8218.
2. Takaoka, I.; Ichikawa, H.; Horibe, Y.; Tomiyama, S.; Ohtsuka, M.; Imanishi, Y.; Arimoto, M.; Usami, Y. J. Org. Chem. 2007, 72, 6127-6134.
3. Boyd, D. R.; Sharma, N. D.; Acaru, C. A.; Malone, J. F.; O’Dowd, C. R.; Allen, C. C. R.; Stevenson, P. J. Org. Lett. 2010, 12, 2206-2209.
4. Ohsugi, M.; Mizuki, K.; Ichikawa, H.; Arimoto, M.; Usami, Y.Org. Lett. 2009, 11, 2699-2701.
5. Reddy, Y. S.; Kadigachalam, P.; Basak, R. K.; Pal, A. P. J.; Vankar, Y. D. Tetrahedron Lett. 2012, 53 132-136.
6. Mizuki, K.; Iwahashi, K.; Murata, N.; Ikeda, M.; Nakai, Y.; Yoneyama, H.; Harusawa, S.; Usami, Y. Org. Lett. 2014, 16, 3760-3763
7. (a) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447–5674. (b) Yang, K. S.; Lee, W. D.; Pan, J. F.; Chen, K. J. Org. Chem. 2003, 68, 915-919.
8. Tsuda, T.; Yoshida, T.; Saegusa, T. J. Org. Chem. 1988, 53, 1037-1040.
9. Jiro, T.; Jitsuo, K.; Shinzo, I.; Masanobu, M. J. Am. Chem. Soc. 1964, 86, 4350-4353.
10. Trost, M. B.; Fullerton, T. J. J. Am. Chem. Soc. 1973, 95, 292-294
11. Yamada, T.; Iritani, M.; Ohishi, H.; Tanaka, H.; Minoura, K.; Doi, M.; Numata, A. Org. Biomol. Chem. 2007, 5, 3979-3986.
12. MuniRaju, C.; Rao, J. P.; Rao, B. V. Tetrahedron Asymmetry. 2012, 23, 86-93.
13. Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092-14093
14. Luparia, M.; Oliveira, M. T.; Audisio, D.; Frebault, F.; Goddard, R.; Maulide, N. Angew. Chem. Int. Ed. 2011, 50, 12631 –12635
15. Li, L. S.; Hou, D. R. RSC Adv., 2014, 4, 91–97
16. Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci., 2010, 1, 427-440