跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李信毅
Hsin-I Li
論文名稱: 地震規模修正因子之探討
Magnitude Scaling Factor
指導教授: 黃俊鴻
Jing-Hung Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 229
中文關鍵詞: 地震規模修正因子權重曲線權重流程等量作用週數
外文關鍵詞: Magnitude scaling factor, Weighting curve, Weighting procedure, Equivalent number of uniform stress cycles
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的在於探討影響等量作用週數之因子,最後提出地震規模修正因子(MSF)之初步建議值。等量作用週數乃依據實驗室所得代表性液化權重曲線與強震紀錄而求得,其主要觀念為將地震所造成之不規則反覆剪應力取某一平均應力τave後,依據權重流程轉為等量作用週數Neq。
    由於台灣地區地質構造複雜,且地形起伏變化大,因此地震波波形、振幅與延時隨地震規模、波傳路徑、測站所在局部土壤條件及震央距等因素而有所不同,故本研究針對這些影響等量作用週數Neq計算之因素作一系列之探討,以瞭解台灣地區地震規模ML與等量作用週數Neq之統計關係。最後,依據所選用之權重曲線提出地震規模修正因子之初步建議值,結果顯示權重曲線之斜率對於MSF之評估結果影響甚大。


    In this research, we study the influence factors on the equivalent number of uniform stress cycles Neq and propose magnitude scaling factors for liquefaction analysis. Based on the cyclic strength weighting curve and acceleration history, the equivalent number of uniform stress cycles were determined by a standard weighting procedure. The weighting procedure can convert an irregular time history of earthquake-induced cyclic stresses to a series of uniform cycles with average shear stress τave.
    The geological structure and terrain is complex in Taiwan, therefore, we study the influence factors on the equivalent number of uniform stress cycles, which include the waveform(amplitude and duration of acceleration history), magnitude, the path of wave propagation, site condition and epicentral distance. When the relationship of earthquake magnitude and equivalent number of uniform stress cycles was established, the magnitude scaling factor for liquefaction analysis were derived from the weighting curve. The results show that the slope of weighting curve is the important factor for influencing the magnitude scaling factor.

    第一章 緒論 1 1.1 研究動機 1 1.2 研究方法 2 1.3 論文內容 3 第二章 文獻回顧 4 2.1前言 4 2.2等量反覆均勻應力作用週數之觀念 5 2.3等量反覆均勻應力作用週數之推導 6 2.3.1剪應歷歷時之正規化 6 2.3.2權重曲線(Weighting curve) 7 2.3.3加權轉換因素值(Conversion factor) 8 2.3.4等量反覆均勻應力作用週數之計算 9 2.4 Seed and Idriss 建議之規模修正因子 11 2.4.1地震規模與等量作用週數之關係 11 2.4.2地震規模修正因子之求得 11 2.5影響等量作用週數之因子 12 2.5.1權重曲線之影響 12 2.5.2土層深度之影響 13 2.5.3地震規模之影響 13 2.5.4選擇之平均反覆剪應力 14 2.5.5隨測站場址與距震央遠近之影響 14 2.6其他學者建議規模修正因子之比較 15 2.6.1 Revised Idriss Magnitude Scaling Factors 15 2.6.2 Ambraseys Magnitude Scaling Factors 15 2.6.3 Arrango Magnitude Scaling Factors 16 2.6.4 Andrus and Stokoe Magnitude Scaling Factors 18 2.6.5 Youd and Noble Magnitude Scaling Factor 19 2.6.6美國地震工程研究中心(NCEER)之建議值 19 2.7應力折減因子之探討 20 第三章 剪應力與加速度及速度歷時相關性之驗證 22 3.1 分析方法 22 3.2 分析結果與討論 25 第四章 分析結果與討論 27 4.1 權重液化曲線 27 4.1.1 與國外土樣之比較 30 4.2 影響等量作用週數之因子 30 4.2.1 選用之平均反覆應力與地震波波形之影響 30 4.2.2 權重液化曲線斜率之影響 32 4.2.3 隨土層深度之影響 32 4.2.4 隨震央距之變化 34 4.2.5 場址效應之探討 35 4.3 地震規模修正因子(MSF)之探討 37 4.3.1 資料來源 37 4.3.2 分析方法 37 4.3.3 分析結果與討論 38 4.3.4 地震規模修正因子之比較 39 4.4 應力折減因子之探討 40 4.4.1 剪力波速對rd之影響 41 4.4.2 PGA對rd之影響 42 4.4.3 地震延時對rd之影響 42 4.4.4 均值土層rd值之探討 43 第五章 結論與建議 45 5.1 結論 45 5.2 建議 46 參考文獻 222 附錄A 國內外砂性土壤之試驗相關資料及液化曲線斜率 226

    1.Annaki, M., and Lee, K.L., “Equivalent uniform cycle concept for soil
    dynamics,” Journal of Geotechnical Engineering Division, ASCE, Vol. 106,
    No.6, pp. 549-564 (1977).
    2.Andrus, R.D., and Stokoe, K.H.,Ⅱ “Liquefaction resistance based on shear
    wave velocity,” Proc., NCEER Workshop on Evaluation of Liquefaction
    Resistance of Soils, National Center for Earthquake Engineering Research,
    State Univ. of New York at Buffalo, pp. 89-128 (1997).
    3.Arango, I.,“Magnitude scaling factors for soil liquefaction evaluations,”
    Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 11, pp. 929-936
    (1996).
    4.Ambraseys, N.N., “Engineering Seismology,” Earthquake Engineering and
    Structural Dynamics, Vol. 17, No. 1, pp.1-105 (1988).
    5.Boulanger, R.W., and Seed, R.B., “Liquefaction of sand under bidirectional
    monotonic and cyclic loading,” Journal of Geotechnical Engineering, ASCE,
    Vol. 121, No. 12, pp. 870-878 (1995).
    6.DeAlba, P., Chan, C.K., and Seed, H.B., “Determination of soil liquefaction
    characteristics by large-scale laboratory tests,” EERC 75-14, Earthquake
    Engineering Research Center, University of California, Berkeley (1975).
    7.Ishihara, K., Silver, M.L., and Kitagawa, H., “Cyclic strengths of
    undisturbed sands obtained by large diameter sampling,” Soils and
    Foundations, Vol. 18, No. 4, pp.61-76(1978).
    8.Ishihara, K., Silver, M.L., and Kitagawa, H., “Cyclic strengths of
    undisturbed sands obtained by a piston sampler,” Soils and Foundations,
    Vol.19, No. 3, pp.61-76(1979).
    9.Ishihara, K., Kawase, Y., and Nakajima, M., “Liquefaction characteristics of
    sand deposits at an oil tank site during the 1978 Miyagiken-Oki earthquake,”
    Soils and Foundations, Vol. 20, No. 2, pp.97-111(1980).
    10.Ishihara, K., Perlea, V., “Liquefaction-Associated ground damage during
    the Vrancea earthquake of March 4, 1977,” Soils and Foundations, Vol. 24,
    No. 1, pp.90-112(1984).
    11.Ishihara, K., Muroi T., and Towhata, I., “In-Situ pore water pressure and
    ground motions during the 1987 Chiba-Toho-Oki earthquake,” Soils and
    Foundations, Vol. 29, No. 4, pp.75-90(1989).
    12.Liu, A.H., Stewart, J.P., Abrahamson, N.A., and Moriwaki, Y., “Equivalent
    number of uniform stress cycles for soil liquefaction analysis,” Journal of
    Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 12, pp.
    1017-1026 (2001).
    13.Lee, K.L., and Chan K., ”Number of equivalent significant cycles in strong
    motion Earthquakes,” Proce. of the “The International Conference on
    Microzonation for Safer Construction Research and Application,” Seattle,
    Washington, Vol. 2, pp. 609-627 (1972).
    14.Mulilis, J.P., Arulanandan, K., Mitchell, J.K., Chan, C.K., and Seed,
    H.B., ”Effects of sample preparation on sand liquefaction,” Journal of
    Geotechnical Engineering Division, ASCE, Vol. 103, No. 2, pp. 91-108
    (1977).
    15.Seed, H.B., and Idriss, I.M., “Simplified procedure for evaluating soil
    liquefaction potential,” Journal of the Soil Mechanics and Foundations
    Division, ASCE, Vol. 107, No. SM9, pp. 1249–1274 (1971).
    16.Seed, H.B., and Idriss, I.M., “Soil moduli and damping factors for dynamic
    response analysis,” EERC 70-10, Earthquake Engineering Research Center,
    University of California, Berkeley (1970).
    17.Seed, H.B., and Idriss, I.M., “Ground motions and soil liquefaction during
    earthquakes,” Earthquake Engineering Research Institute Monograph, Oakland,
    California (1982).
    18.Seed, H.B., Idriss, I.M., Makdisi, F., and Banerjee, N., “Representation
    of irregular stress time histories by equivalent uniform stress series in
    liquefaction analyses,” EERC 75-29, Earthquake Engineering Research
    Center,University of California, Berkeley (1975).
    19.Schnabel, P.B., Lysmer, J., and Seed, H.B., “A computer program for
    earthquake response analysis of horizontally layered sites,” EERC 72-12,
    Earthquake Engineering Research Center, University of California, Berkeley
    (1972).
    20.Toki, S., Tatsuoka, F., Miura, S., Yoshimi, Y., Yasuda, S., and Makihara,
    Y.,“Cyclic undrained triaxial strength of sand by a cooperative test
    program,” Soils and Foundations, Vol. 26, No. 3, pp. 117-128 (1986).
    21.Tatsuoka, F., Muramatsu, M., and Sasaki, T., “Cyclic undrained stress-
    strain behavior of dense sands by torsional simple shear test,” Soils and
    Foundations, Vol. 22, No. 2, pp. 55-70 (1982).
    22.Tatsuoka, F. and Silver, M.L., “Undrained stress-strain behavior of sand
    under irregular loading,” Soils and Foundations, Vol. 21, No. 1, pp. 51-66
    (1981).
    23.Tokimatsu, K., Yoshimi, Y., and Ariizumi, K., “Evaluation of liquefaction
    resistance of sand improved by deep vibratory compaction” Soils and
    Foundations, Vol. 30, No. 3, pp. 153-158 (1990).
    24.Youd, T.L., and Noble, S.K., “Magnitude scaling factors,” Proc., NCEER
    Workshop on Evaluation of Liquefaction Resistance of Soils, National Center
    for Earthquake Engineering Research, State Univ. of New York at Buffalo, pp.
    149-165 (1997a).
    25.Yoshimi, Y., Tokimatsu, K., and Hosaka, Y., “Evaluation of liquefaction
    resistance of clean sands based on high-quality undisturbed samples,” Soils
    and Foundations, Vol. 29, No. 1, pp. 93-104 (1989).
    26.Yoshimi, Y., Tokimatsu, K., and Ohara, J., ”In situ liquefaction resistance
    of clean sands over a wide density range” Geotechnique, Vol. 44, No. 3, pp.
    479-494.(1994)
    27.林資凱,「水力回填煤灰之動態特性」,碩士論文,國立中央大學土木工程研究所,中
    壢(2001)。
    28.曾豐升,「現地土壤之液化強度與震陷特性」,碩士論文,國立中央大學土木工程研究
    所,中壢(2002)。
    29.廖啟雯,「地下地質分散式資料庫建置與應用-以台北盆地為例」,碩士論文,國立中央
    大學應用地質研究所,中壢(1998)。

    QR CODE
    :::