| 研究生: |
翁靖婷 Chin-Ting Weng |
|---|---|
| 論文名稱: |
考慮破裂方向性之強地動模型在地震預警之應用 |
| 指導教授: |
郭俊翔
Chun-Hsiang Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 234 |
| 中文關鍵詞: | 地震預警系統 、區域型地震預警 、強地動模型 、破裂方向性效應 |
| 外文關鍵詞: | earthquake early warning system, regional earthquake early wraning, ground motion model, rupture directivity |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位於地震頻繁的板塊交界處,且時常發生中大規模的地震,因
此擁有一個能夠提供準確預警的地震預警系統尤為重要。目前台灣氣象
署使用的地震預警系統屬於區域型地震預警,在區域型地震預警中,強
地動模型(GMM)為不可或缺的一部分。當中大規模的地震發生時,震
源時常產生破裂方向性,造成破裂方向上的地動值有明顯被放大的現象,
若我們使用 GMM 預估地動值的過程中未加以考慮,則破裂前進方向上
的地動值可能會被嚴重低估。本研究將破裂方向性效應加入 GMM 的計
算中,採用線震源考慮破裂方向性的設定,針對台灣近十年 Mw > 5.5 的
15 個地震和集集地震進行地動值預估。在預估過程中,我們實施了近震
源修正,以避免預估值過大或過小的情況,最後將結果與未考慮破裂方
向性的點震源和線震源結果進行比較。由於較大規模的地震可能都伴隨
著破裂方向性效應,因此使用線震源考慮破裂方向性預估的地動值結果
大部分都比未考慮破裂方向性的預估結果更好。另外,本研究測試了逐
秒破裂的地動值預估,以將其應用於地震預警系統中。研究結果顯示,
大部分地震事件的地動值預估在 15 秒至 20 以內即可達到穩定的狀態,
這表明該方法在地震預警系統中具有可行性。綜上所述,本研究不僅能
夠近即時地決定破裂方向,同時也能快速地評估破裂方向上的地動值,
並且有效地提升預估結果的準確性,以更好地改善地震預警的表現。
Taiwan is located on the boundary between the Eurasian Plate and the Philippine Sea Plate and frequently experiences moderate or large-magnitude earthquakes. Therefore, it is critical to have an accurate earthquake early warning system. Currently, the Central Weather Administration in Taiwan employs a regional earthquake early warning system where Ground Motion Models (GMM) are indispensable. During a larger-magnitude earthquake, the directivity effect is caused by source rupturing. Specifically, the propagation of the rupture can lead to significant amplification of ground motion along the direction of the fault rupture. If the rupture directivity is not considered in ground motion models, predicted ground motions in the direction of rupture propagation may be seriously underestimated. This study uses a GMM and a rupture directivity function to predict PGA and PGV. We chose to use a line source considering rupture directivity to estimate ground motion for 15 earthquakes with magnitudes greater than 5.5 in Taiwan over the past decade, as well as the Chi-Chi earthquake. In the estimation process, near-source corrections were implemented to mitigate overestimation or underestimation issues. Next, the results obtained using a line source considering rupture directivity will be compared with those obtained from point and line sources that do not consider rupture directivity. The rupture
directivity effect is usually observed during larger magnitude earthquakes, and therefore, the performance of ground motion estimations using a linear source considering rupture directivity is generally better than those that do not consider directivity. Additionally, the study tested real-time ground motion estimation using instantaneous rupture and showed that stable states can be achieved within
15 to 20 seconds for most earthquake events. It indicates the feasibility of this approach in earthquake early warning systems. Thus, the research achieves multiple objectives: real-time determination of rupture direction, rapid assessment of ground motions along the rupture direction, and enhancement of prediction accuracy. These advancements enhance the performance of earthquake early warning systems in Taiwan.
Abrahamson, N. (2000). Effects of rupture directivity on probabilistic seismic hazard analysis. Managing Earthquake Risk in the 21st Century, Palm Springs, CA, 12–15 November
2000.
Anderson, J. G., & Uchiyama, Y. (2011). A methodology to improve ground-motion prediction equations by including path corrections. Bulletin of the Seismological Society of Amer-
ica, 101(4), 1822–1846.
Boatwright, J. (2007). The persistence of directivity in small earthquakes. Bulletin of the Seismological Society of America, 97(6), 1850–1861.
Boore, D. M. (2010). Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bulletin of the Seismological Society of America, 100, 30–39.
Chao, S. H., Chiou, B., Hsu, C. C., & Lin, P. S. (2020). A horizontal ground-motion model for crustal and subduction earthquakes in taiwan. Earthquake Spectra, 36(2), 463–506.
Chao, S. H., Kuo, C. H., Huang, H. H., Hsu, C. C., & Jan, J. C. (2019). Observed pulse-liked ground motion and rupture directivity effect in taiwan ground motion dataset. Interna-
tional Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake, Taipei, Taiwan, September 15-19, 2019.
Chao, S. H., Lin, C. M., Kuo, C. H., Huang, J. Y., Wen, K. L., & H., C. Y. (2021). Implementing horizontal-to-vertical fourier spectral ratios and spatial correlation in a ground motion prediction equation to predicting site effect. Earthquake Spectra, 37(2), 827–856.
Convertito, V., Caccavale, M., Matteis, R. D., Emolo, A., Wald, D., & Zollo, A. (2012). Fault extent estimation for near-real-time ground-shaking map computation purposes. Bulletin of the Seismological Society of America, 102(2), 661–679.
Hsu, C. C., & Chao, S. H. (2016). Development of horizontal spectral accelerations relationship between rotd50 and rotd100 for taiwan earthquake. The 5th International Symposium on the Effects of Surface Geology on Seismic Motion (ESG5), Aug. 15-17, Taipei, Taiwan.
Huang, H. H., Aso, N., & Tsai, V. C. (2017). Toward automated directivity estimates in earthquake moment tensor inversion. Geophysical Journal International, 211, 1062–1076.
Huang, J. Y., Abrahamson, N. A., Sung, C. H., & Chao, S. H. (2024). New empirical source scaling laws for crustal earthquakes incorporating fault dip and seismogenic-thickness
effects. Seismological Research Letters 2024, 95(4), 2352–2367.
Jan, J. C., Huang, H. H., Wu, Y. M., Chen, C. C., & Lin, C. H. (2018). Near-real-time estimates on earthquake rupture directivity using near-field ground motion data from a dense low cost seismic network. Geophysical Research Letters, 45, 7496–7503.
Kwok, O. L. A., Stewart, J. P., & Kwak, D. Y. (2018). Taiwan-specific model for vs30 prediction considering between-proxy correlations. Earthquake Spectra, 34(4), 1973–1993.
Lee, S. J., Huang, H. H., Shyu, J. B. H., Yeh, T. Y., & Lin, T. c. (2014). Numerical earthquake model of the 31 october 2013 ruisui, taiwan, earthquake: Source rupture process and
seismic wave propagation. Journal of Asian Earth Sciences, 96, 374–385.
Lee, S. J., Lin, T. C., Liu, T. Y., & Wong, T. P. (2018). Fault-to-fault jumping rupture of the 2018
Mw 6.4 hualien earthquake in eastern taiwan. Seismological Research Letters, 90(1), 30–39.
Lee, S. J., Liu, T. Y., & Lin, T. C. (2023). The role of the west-dipping collision boundary fault in the taiwan 2022 chihshang earthquake sequence. Scientific Reports, 13(3552).
Lee, S. J., Ma, K. F., & Chen, H. W. (2006). Three dimensional dense strong motion waveform
inversion for the ruputre process of the 1999 chi-chi, taiwan, earthquake. Journal of Geophysical Research: Solid Earth, 111, B11308.
Lee, S. J., Yeh, T. Y., Huang, H. H., & Lin, C. H. (2015). Numerical earthquake models of the 2013 nantou, taiwan, earthquake series: Characteristics of source rupture processes, strong ground motions and their tectonic implication. Journal of Asian Earth Sciences,
111, 365–372.
Lee, S. J., Yeh, T. Y., & Lin, Y. Y. (2016). Anomalously large ground motin in the 2016 ML 6.6 meinong, taiwan, earthquake: A synergy effect of source rupture and site amplification.
Seismological Research Letters, 87(6), 1319–1326.
Lin, C. M., Kuo, C. H., & Huang, J. Y. (2018). Shallow shear-wave velocity structures of tsmip stations in taiwan. NCREE Report No. NCREE-18-019. Taipei, Taiwan: National Center
for Research on Earthquake Engineering, 5–8.
Somerville, P. G., Smith, N. F., Graves, R. W., & Abrahamson, N. A. (1997). Modification of empirical strong ground motion attenuation relations to include the amplitude and
duration effects of rupture directivity. Seismological Research Letters, 68, 199–222.
Sung, C. H., & Lee, C. T. (2009). Single site strong-motion attenuation relationship. Proceeding of the Next Generation of Research on Earthquake-induced Landslides - an International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, Jhongli, Taiwan, 284–292.
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seis-
mological Society of America, 84(4), 974–1002.
Wu, Y. M., & Mittal, H. (2021). A review on the development of earthquake warning system using low-cost sensors in taiwan. Sensors, 21, 7649.
Yen, Y. T., & Ma, K. F. (2011). Source-scaling relationship for m4.6-8.9 earthquakes, specifically for earthquakes in the collision zone of taiwan. Bulletin of the Seismological Society of America, 101(2), 464–481.
何春蓀. (2006). 臺灣地質概論:臺灣地質圖說明書,第三版. 經濟部中央地質調查所, 共164頁.
林啟文等. (2021). 臺灣活動斷層分布圖. 經濟部中央地質調查所彙刊, 第 34號,第三頁.
郭俊翔等. (2017). 臺灣強震測站場址資料. 國家地震工程研究中心, NCREE-17-004,共80頁.
鄧屬予. (2002). 板塊間看臺灣地震. 科學發展, 350期.
陳家立等. (2020). 使用權重克利金法建置臺灣地區網格化 vs30 數值.
國家地震工程研究中心, 研究成果報告, 17–20.
陳文山等. (2016). 臺灣地質概論. 中華民國地質學會, 共十三章,約 250頁.
陳肇夏與王京新. (1995). 臺灣變質相圖說明書,第二版. 經濟部中央地質調查所特刊, 第2號,共51頁.