| 研究生: |
許畯珽 Chun-ting Hsu |
|---|---|
| 論文名稱: |
以氬離子雷射對玻璃材料加工之研究 laser micromachining of glass with argon laser |
| 指導教授: |
戴朝義
Chao-Yi Tai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 雷射加工 、玻璃 |
| 外文關鍵詞: | glass, laser micromachining |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以波長為514奈米的氬離子連續波雷射,搭配數值孔徑(NA)為0.55的物鏡,對「GLS玻璃」、「BIN850玻璃」進行雷射加工,利用改變雷射偏極化方向、平台移動速度、雷射脈衝寬度、雷射加工方式及雷射光功率來探討各種雷射加工製程對樣品產生的影響。
在雷射加工過程中發現,該雷射對「GLS玻璃」產生凹陷的結構變化,而「BIN850玻璃」則是產生突起的結構變化,其中「GLS玻璃」的臨界損壞值為17kJ/cm2,「BIN850玻璃」的臨界損壞值為15kJ/cm2。不同加工方式對樣品造成的截面形狀也有所差異。在分析折射率改變的過程,以波長為1550奈米的雷射光斜向入射至加工與未加工之「GLS玻璃」,並量測其反射光強,再藉由菲涅耳方程式(Fresnel equation)計算其折射率。而加工過程對於「GLS玻璃」造成負的折射率變化為-0.406~-0.449。
In this thesis, argon ion continuous wave laser with wavelength at 514nm is focused on the surface of the GLS glass and BIN850 glass by an objective lens (NA=0.55) to do laser-machining. The performances of laser-machining is discussed by various light sources and conditions, such as polarization state, pulse width, average power of the laser, and the speeds of the 3D scanning stage.In the process of the laser-machining, the results are different between GLS glass and BIN850 glass, in which the former generates valleys and the latter bumps, and the damage threshold of GLS glass is 17kJ/cm2, the damage of BIN850 glass is 15kJ/cm2. And dissimilar methods of laser-machining produce dissimilar cross sections. In order to determine the difference of index of refraction produced by laser-machining, the laser (wavelength is 1550nm) oblique incident to GLS glass and machined GLS glass. And we measure the reflected power. Then we calculate the index of refraction by Fresnel equation. We find the process of laser-machining cause negative index change to GLS glass is -0.406~-0.449。
[1] Intel 2003
[2] Parallel Optical Interconnect Technologies, 經濟部學界開發產業技術計畫
[3] http://en.wikipedia.org/wiki/Main_Page
[4] M. Worgull, J.F. Hétu, K.K. Kabanemi, M. Heckele Microsystem Technologies, 2006 – Springer
[5] Doug Dixon, GDM Product Manager, Time Pressure Dispensing
[6] Maiman TH (1960) Nature 187:493
[7] Patel, C. K. N. (1964). "Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2". Physical Review 136 (5A): A1187–A1193.
[8] Von der Linde D, Sokolowski-Tinten K, Bialkowski J (1997) Appl Surf Sci 109-110:1
[9] 2001 Clack-MXR, Inc.
[10] Bloembergen N (1974) IEEE J Quant Electron 10:375
[11] Du D, Liu X, Korn G, Squier J, Mourou G (1994) Appl Phys
Lett 64:3071
[12] Kautek W, Kruger J, Lenzner M, Sartania S, Spielmann C, Krausz F (1996) Appl phys Lett 69:3146
[13] Stuart BC, Feit MD, Herman S, Rubenchik AM, Shore BW, Perry MD (1996) J Opt Soc Am B 13:459
[14] Lenzner M, Kruger J, Sartania S, Cheng Z, Spielmann C, Mourou G, Kautek W, Krausz F (1998) Phys Rev Lett 80:4076
[15] Stoian R, Boyle M, Thoss A, Rosenfeld A, Korn G, Hertel IV, Campbell EEB (2002) Appl Phys Lett 80:353
[16] Shoji Maruo, Osamu Nakamura, and Satoshi Kawata, OPTICS LETTERS / Vol. 22, No. 2 / January 15, 1997
[17] 2000 Clack-MXR, Inc.
[18] Zhang Y, Katoh T, Amano D (2002) Microsyst Technol 8:99
[19] H. Ebendorff-Heidepriem, Optical Materials 25 (2004) 109–115
[20] Arshad K.Mairaj,Ping Hua, Harvey N. Rutt, and Daniel W. Hewak, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 8, AUGUST 2002
[21] Srinivasan R, Braren B (1989) Chem Rev 89:1303
[22] Bauerle D (2000) Laser processing and chemistry, 3rd edn. Springer, Berlin Heidelberg New York
[23] Lippert, S. Georgiou, Polymers and light Page.42
[24] Vest CH (1971) Holographic Interferometry. Academic, New York
[25] Le Luo, DanglingWang, Chengde Li, Hongbing Jiang, Hong Yang and Qihuang Gong, J. Opt. A: Pure Appl. Opt. 4 (2002) 105–110
[26] http://www.redoptronics.com/
[27] 1999 Clack-MXR, Inc.
[28] Chris B. Schaffer, Alan O. Jamison, José F. García, and Eric Mazur, “Structural changes induced in transparent materials with ultrashort laser pulses”, OPTICAL ENGINEERING -NEW YORK- MARCEL DEKKER INCORPORATED (2003) VOL 80, pages 395-418
[29] A.K. Mairaj, A.M. Chardon, D.P. Shepherd, D.W. Hewak, J. Sel. Top. Quant. Electron. 8 (2002) 1381.
[30] A.K. Mairaj, C. Riziotis, A.M. Chardon, P.G.R. Smith, D.P. Shepherd, D.W. Hewak, Appl. Phys. Lett. 81 (2002) 3708.
[31] C. Meneghini, A. Villeneuve, J. Opt. Soc. Am. B 15 (1998) 2946.
[32] K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 71 (1997) 3329.
[33] K. Hirao, K. Miura, J. Non-Cryst. Solids 239 (1998) 91.
[34] D. Homoelle, S. Wielandy, A. Gaeta, N.F. Borelli, C. Smith, Opt. Lett. 24 (1999) 1311.
[35] O.M. Efimov, L.B. Glebov, K.A. Richardson, E. Van Stryland, T. Cardinal, S.H. Park, M. Couzi, J.L. Bruneel, Opt. Mater. 17 (2001) 379.
[36] T.M. Monro, D. Moss, et al., Phys. Rev. Lett. 80 (1998) 4072.
[37] T.M. Monro, C.M. de Sterke, L. Poladian, J. Modern Opt. 48 (2001) 191.
[38] A.M. Ljungstrom, T.M. Monro, J. Lightwave Technol. 20 (2002) 78.
[39] A.M. Ljungstrom, T.M. Monro, Opt. Express 10 (2002) 230.
[40] A.M. Ljungstrom, T.M. Monro, CLEO 2002, Long Beach, California, TCuM4, 19–24 May 2002.
[41] C. Meneghini, A. Villeneuve, J. Opt. Soc. Am. B 15 (1998) 2946.
[42] GOFIR Technologies, INC.
[43] J. Requejo-Isidro, A.K. Mairaj, V. Pruneri, D.W. Hewak, M.C. Netti, J.J. Baumberg, Journal of Non-Crystalline Solids 317 (2003) 241–246
[44] A.K. Mairaj, C. Riziotis, A.M. Chardon, P.G.R. Smith,D.P. Shepherd, D.W. Hewak, Appl. Phys. Lett. 81 (2002)3708.
[45] Y.D West, T. Schweizer, D.J. Brady and D.W. Hewak, “Gallium Lanthanum Sulphide Fibre for Infrared Transmission”, Fibre & Integrated Optics, 19, 229-250, Jul-Sep, 2000