| 研究生: |
艾莉亞 Aprilia Nurmawati |
|---|---|
| 論文名稱: |
模擬在地熱型及佛卡諾型噴發中的火山彈道拋體軌跡,以台灣北部大屯山火山群中的七星山為例 Modeling of volcanic ballistic projectiles trajectories during hydrothermal and vulcanian eruptions at Mt. Chishin, Tatun Volcano Group, northern Taiwan |
| 指導教授: |
柯士達
K. I. Konstantinou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 火山彈道拋體 、地熱型噴發 、佛卡諾型噴發 、大屯火山群 、危險範圍示意圖 |
| 外文關鍵詞: | Volcanic Ballistic Projectiles, hydrothermal explosion, vulcanian eruption, Tatun Volcano Group, hazard map |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討台灣北部大屯火山群(TVG)的火山彈道拋體(VBP)可能產生的危害。VBP的直徑大於0.1米,在噴發期間以近乎拋物線的軌跡從排氣口噴出。研究中討論地熱型和佛卡諾型兩種噴發模式。基於舊有研究中的已知參數建立地熱爆炸模型,其中提到以瞬間降低的液體壓力來獲取VBP的初始速度。以這些速度建立每次噴發場景的彈道拋體模型。佛卡諾型的噴發模式考慮了當火山蓋層噴發時急速減壓的能量。火山蓋層碎片的壓力被視為噴發VBP的能量來源。計算VBP的距離除了使用軌道方程式外,並考慮到減小的阻力區域和風速,而VBP直徑分別為0.2、1.0和2.0公尺。研究中的可能產生危害的示意圖是以大屯火山群的地形透過每個場景映射影響點來繪製。從VBP的50m / s初始速度對水熱爆炸的影響來看,表示其距離七星山西北方的小油坑噴氣孔不超過310公尺。 此研究也指出,由水熱爆炸所引起的VBP曾被記錄到最高起始速度為200m/s。由於水熱爆炸危險區範圍狹窄,則在VBP直徑為2公尺時,有一個花園會處於危險範圍內。值得注意的是,由於小油坑噴氣孔位於國家公園內,VBP可能對造訪小油坑的遊客構成嚴重的威脅。在具有370m / s初始速度的佛卡諾型噴發中,VBP影響的範圍可達到半徑5158米,在七星山的山頂附近。在佛卡諾型噴發的危險範圍示意圖中,可看到區域內包括學校、辦公室和中央氣象局觀測站。 而因為其最高可達2,450米,VBP也可能對飛機造成威脅。
此外,在著陸動能調查中,直徑0.2 公尺的VBP可能無法穿透RC板的建築物,而直徑大於0.2公尺的VBP則可穿透本研究中的所有建築物。
This study investigates the hazard produced by Volcanic Ballistic Projectiles (VBP) at Tatun Volcano Group (TVG), northern Taiwan. VBP is a material with a diameter more than 0.1 m ejected from a vent during an explosive eruption and following nearly parabolic trajectories. Two eruption models are considered: hydrothermal and vulcanian. Hydrothermal explosion model is built based on the parameters known from previous studies which describe the sudden fluid pressure drop in order to obtain the initial velocity of VBP. These velocities are then used to obtain the ballistic trajectory model for each eruption scenario. The model for a vulcanian eruption considers the energy during rapid decompression when a caprock is blasted. The remaining pressure after fragmentation of caprock is then considered as able to produce energy to eject the VBPs. The ballistic equation is used to investigate the distance of VBP which also takes into account the reduced drag zone, wind speed, and VBP diameter of 0.2, 1.0, and 2.0 meters. Hazard maps are generated by mapping the points of impacts according to each scenario considering also the topography at TVG. VBP impact on hydrothermal explosions with 50 m/s initial velocity shows that it reaches no more than 310 m from Hsiaoyoukeng fumarole at NW of Mt. Chishin. This study also determines the VBPs produced by the highest initial velocity on hydrothermal explosion ever recorded, which is 200 m/s. Due to the narrow extent of hydrothermal explosion hazard zones, the only place that is inside the danger zone is a public garden which is within the landing area of VBPs with diameter of 2.0 m. However, since Hsiaoyoukeng fumarole is located in a national park, it should be noted that the VBPs may be a serious threat to the tourists visiting the fumarole. During a vulcanian eruption with 370 m/s initial velocity, the maximum extent of VBPs reached a much larger area, with radius of 5,158 m, around the peak of Mt. Chishin. The hazard maps for vulcanian eruption show that the danger zone covers schools, offices, and Central Weather Bureau stations for all eruption scenarios. The VBP may also cause threat to the aircraft as its maximum height, 2,450 m, may reach the flightpath of an airplane. Moreover, during the investigation of landing kinetic energy, the VBPs with diameter 0.2 m may not be able to penetrate building made of RC slabs, while the bigger ones are able to penetrate all building materials investigated in this study.
Alatorre-Ibargüengoitia, M.A., Delgado-Granados, H., (2006). Experimental determination of drag coefficient for volcanic materials: calibration and application of a model to Popocatépetl volcano (Mexico) ballistic projectiles. Geophys. Res. Lett. 33, L11302. doi:10.1029/2006GL026195.
Alatorre-Ibargüengoitia, M.A., Delgado-Granados, H., Dingwell, D.B. (2012). Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico). Bull. Volcanol., 74, 2155–2169. doi:10.1007/s00445-012-0657-2
Alatorre-Ibargüengoitia, M.A., Scheu, B., Dingwell, D.B., Delgado-Granados, H., Taddeucci, J., (2010). Energy consumption by magmatic fragmentation and pyroclast ejection during vulcanian eruptions. Earth Planet. Sci. Lett. 291, 60–69. doi:10.1016/j.epsl.2009.12.051.
Belousov, A., Belousova, M., Chen, C. H., Zellmer, G.F. (2010). Deposits, character and timing of recent eruptions and gravitational collapses in Tatun volcanic group, Northern Taiwan: hazard-related issues. J. Volcanol. Geotherm. Res., 191, 205–221. doi:10.1016/j.jvolgeores.2010.02.001
Blong, R. J., (1981). Some Effects of Tephra Falls on Buildings, in: Tephra Studies: Proc. NATO Advanced Study Institute Tephra Studies as a Tool in Quaternary Research, edited by: Self, S. and Sparks, R. S. J., held in Laugarvatn and Reykjavík, Iceland, 18–29 June 1980, D. Reidel Publishing Company, Dordrecht, Netherlands, 405–420.
Browne, P. R. L., and J. V. Lawless, (2001). Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere, Earth Sci. Rev., 52, 299–331, doi:10.1016/S0012-8252(00)00030-1.
Burgisser, A., Arbaret, L., Druitt, T.H., Giachetti, T., (2011). Pre-explosive conduit conditions of the 1997 vulcanian explosions at Soufriére Hills volcano, Montserrat: II. Overpressure and depth distribution. J. Volcanol. Geotherm. Res. 199, 193–205. doi:10.1016/j.jvolgeores.2010.11.14.
Chen, C-H., Burr G.S., Lin S-B. (2010). Time of a near Holocene volcanic eruption in the Tatun Volcano Group, northern Taiwan: evidence from AMS radiocarbon dating of charcoal ash from sediments of the Sungshan formation in Taipei basin. Terr. Atmos. Ocean Sci. 21, 611–614. doi:10.3319/TAO.2009.12.11.02(TH
Hairer, E., Wanner, G., (2010). Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems. Springer.
Hoerner, S.F., (1965). Fluid Dynamic Drag. S. F. Hoerner, New York (450 pp.).
Kilgour, G., Manville, V., Della Pasqua, F., Graettinger, A., Hodgson, K.A., Jolly, G.E., (2010). The 25 September 2007 eruption of Mount Ruapehu, New Zealand: directed ballistics, surtseyan jets, and ice-slurry lahars. J. Volcanol. Geotherm. Res. 191, 1–14. doi:10.1016/j.jvolgeores.2009.10.015.
Konstantinou, K.I. (2015a). Potential for future eruptive activity in Taiwan and vulnerability to volcanic hazards. Nat. Hazards, 75, 2653-2671. doi:10.1007/s11069-014-1453-4
Konstantinou, K.I. (2015b). Tornillos modeled as self-oscillations of fluid filling a cavity: Application to the 1992–1993 activity at Galeras volcano, Colombia. Physics of the Earth and Planetary Interiors, 238, 23-33. doi:10.1016/j.pepi.2014.10.014
Konstantinou, K.I. (2015c). Maximum horizontal range of volcanic ballistic projectiles ejected during explosive eruptions at Santorini caldera. J. Volcanol. Geotherm. Res., 301, 107–115. doi:10.1016/j.jvolgeores.2015.05.012
Konstantinou, K.I., Lin C-H, Liang W-T, Chan Y.C., (2009). Seismogenic stress field beneath the Tatun Volcano Group, northern Taiwan. J. Volcanol. Geotherm. Res., 187, 261–271. doi:10.1016/j.jvolgeores.2009.09.011
Lee H-F, Yang TF, Lan TF, Chen C-H, Song SR, Tsao S (2008) Temporal variations of gas composition of fumaroles in the Tatun Volcano Group, northern Taiwan. J. Volcanol. Geotherm. Res. 178, 624–635. doi:10.1016/j.jvolgeores.2008.06.005
Maeno, F., Nakada, S., Nagai, M., Kozono, T., (2013). Ballistic ejecta and eruption condition of the vulcanian explosion of Shinmoedake volcano, Kyushu, Japan on 1 February 2011. Earth Planets Space 65, 609–621. doi:10.5047/eps.2013.03.004.
Mastin, L.G., (2001). A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. US Geological Survey, Open-File report 01–45.
Montanaro, C., Scheu, B., Gudmundsson, M.T., Vogfjörd, K., Reynolds, H.I., Dürig, T., Strehlow, K., Rott, S., Reuschlé, T., Dingwell, D.B., (2016). Multidisciplinary constraints of hydrothermal explosions based on the 2013 Gengissig lake events, Kverkfjöll volcano, Iceland. Earth Planet. Sci. Lett. 434, 308–319. doi:10.1016/j.epsl.2015.11.043.
Muffler, L.J.P., White, D.E., Truesdell, A.H., (1971). Hydrothermal explosion craters in Yellowstone National Park. Geol. Soc. Am. Bull. 82, 723–740. doi:10.1130/0016-7606(1971)82[723:HECIYN]2.0.CO;2.
Pomonis, A., Spence, R., and Baxter, P. J., (1999). Risk Assessment of Residential Buildings for an Eruption of Furnas Volcano, São Miguel, the Azores, J. Volcanol. Geotherm. Res., 92, 107–131. doi:10.1016/S0377-0273(99)00071-2
Sato, H., Taniguchi, H., (1997). Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions: implications for energy partitioning. Geophys. Res. Lett. 24, 205–208. doi:10.1029/96GL04004
Seno, T. (1977). The instantaneous rotation vector of the Philippine sea plate relative to the Eurasian plate. Tectonophysics, 42, 209-226. doi:10.1016/0040-1951(77)90168-8
Seno, T., Stein, S., and Grip, A. E., (1993). A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geologic data. Journal of Geophysical Research, 98, 17941-17948. doi:10.1029/93JB00782
Song, R.S., Yang T.F., Yeh Y.H., Tsao S., Lo H.J., (2000). The Tatun Volcano Group is active or extinct?, J .Geol. Soc. China, 43:521–534
Spence, R.J.S., Kelman I., Baxter P.J., Zuccaro G., Petrazzuoli S., (2005) Residential building and occupant vulnerability to tephra fall. Nat Hazards Earth Syst. Sci. 5(4):477–494. doi:10.5194/nhess-5-477-2005
Spieler, O., Kennedy, B., Kueppers, U., Dingwell, D.B., Scheu, B., Taddeucci, J., (2004). The fragmentation threshold of pyroclastic rocks. Earth Planet. Sci. Lett. 226, 139–148. doi:10.1016/j.epsl.2004.07.016.
Tsai Y-W, Song S-R, Chen H-F, Li S-F, Lo C-H, Lo W, Tsao S., (2010). Volcanic stratigraphy and potential hazards of the Chihsinshan volcano subgroup in the Taiwan Volcano Group, northern Taiwan. Terr Atmos Ocean Sci., 21, 587–598. doi:10.3319/TAO.2010.02.22.03(TH)
Tsunematsu, K., Ishimine, Y., Kaneko, T., Yoshimoto, M., Fujii, T., Yamaoka, K., (2016). Estimation of ballistic block landing energy during 2014 Mount Ontake eruption. Earth Planets Space, 68:88, doi:10.1186/s20623-016-0463-8
Vanderkluysen, L., Harris, A.J.L., Kelfoun, K., Bonadonna, C., Ripepe, M., (2012). Bombs behaving badly: unexpected trajectories and cooling of volcanic projectiles. Bull. Volcanol. 74, 1849–1858. doi:10.1007/s00445-012-0635-8.
Wang, K.L., S.L. Chung, C.H. Chen, R. Shinjo, T.F. Yang, C.H. Chen, (1999). Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough, Tectonophysics, 308, 363–376. Doi:10.1016/S0040-1951(99)001111-0
Wang W.H., Chen C-H., (1990). The volcanology and fission track age dating of pyroclastic deposits in Tatun Volcano Group. Acta. Geol. Taiwan, 28:1–30
Yang, T.F., Sano Y., Song S.R., (1999). He-3/He-4 ratios of fumaroles and bubbling gases of hot springs in Tatun Volcano Group, North Taiwan. Nuovo Cimento C22(3–4):281–286
Yu, S.B., H.Y. Chen, L.C. Kuo, (1997). Velocity field of gps stations on the Taiwan area. Tectonophysics. 347, 115-134