跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳宗霖
Tsung-Lin Wu
論文名稱: 以鈮酸鋰晶體為基板製作3Gbps頻寬之快速光學調製器
Optical Modulator of 3Gbps bandwidth based on LiNbO3 Crystal
指導教授: 張正陽
Jenq-Yang Chang
陳彥宏
Yen-Hung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 82
中文關鍵詞: 鈮酸鋰鈦擴散光調製器
外文關鍵詞: lithium niobate, titanium indiffused process, optical modulator
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今資訊時代的快速爆炸發展,資訊的傳輸量越趨龐大,並因世界網路
    的發展,國與國之間的訊息交換也越趨重要,大量的光纖海底電纜陸續被建
    造,而鈮酸鋰晶體憑藉其優異的晶體光學性質,且與電訊號傳輸相比,較難
    被竊取與竄改且所需之驅動能源也較低,符合世界的能源降低趨勢,被大量
    的被應用在其中,而隨著光通訊時代的來臨,各國無不重視光通訊的發展。
    快速電光調製器,為光通訊產業中不可或缺的一項元件,其藉由鈦波導
    擴散製程的優勢,具有低的傳播損耗,高的位元率、高發展應用性,以及低
    驅動電壓與低訊噪比、低環境溫度影響的優勢,逐漸在美洲、歐洲、日
    本……等之本島或跨國的光纖網路、海底電纜的相關設備中被採用。而我國
    也透過產學合作的方式與各單位進行相關的研究與發展,以其可以開發出相
    關商品,並完成國家自主研究之目標,並期望國家跟上世界各國光通訊世代
    的腳步,完成各種相關的產業升級與發展。
    本文製作出使用1550nm 光源之3Gbps 電光快速調製器。我們採用Z 切
    (Z-Cut)鈮酸鋰晶體,藉以使用鈮酸鋰晶體極高的電光系數,並依電光效應
    原理來達成,馬氏干涉儀波導的設計採用商用軟體R-Soft 來輔助完成,波
    導製作以金屬鈦擴散製程為主,完成設計波導寬度為7μm、間距寬度為60
    μm、S-Bend 長度為6000μm 單模傳輸之馬氏干涉儀(Mach-Zehnder)結構。
    電極設計使用高頻模擬軟體(High Frequency Structure Simulator,
    HFSS),並以高頻電訊號傳輸中常使用的共平面波導(Co-Planar Waveguide)
    電極結構,並以黃金為材料,當作調製器的驅動電極,得到電傳輸訊號頻寬
    (S21)達40GHz 以上,電傳輸反射訊號(S11)低於-18dB。緩衝層我們使用傳統
    半導體常見的二氧化矽,並以原子蒸鍍設備輔以製作,以期達成我們速度匹
    配的條件,並採用1μm 的厚度來搭配調製器的設計。且為了能夠在與速度
    匹配達成更佳的條件,我們必須採用厚電極的設計,所以我們也搭配電鍍系
    統,並使用對環境較無害的環保型金電鍍液為材料,在環境溫度35℃下,
    成功製作電極厚度高達21μm 的厚黃金電極。
    最後完成全長為3.4cm,直波導在TM 模態下的傳播損耗為
    0.8735dB/cm,而馬氏干涉儀於TM 模態下的傳播損耗為0.9911 dB/cm,厚
    金屬電極之特性,在網路分析儀的量測下其電傳輸訊號頻寬(S21)達
    21.3GHz、電傳輸反射訊號(S11)皆低於-15dB,光電轉換訊號於眼圖儀的量測
    下具有3Gbps 之頻寬響應,而其驅動電壓經量測為6V。


    Today the era of the information explosion are rapid development, data
    transportation increasingly more large, and because the development of network
    of information exchanging between countries are more important, a large
    number of undersea fiber transportation system have been built, and lithium
    niobate with its excellent optical properties, and compared with telecom
    transmission, it’s more difficult to stolen and tampered, with the low driving
    energy required it’s in line with the policy of world energy trends and applies in
    many regions. With the advent of optical communication era, none of countries
    not to attach this regions.
    Ultra‐fast electro‐optical modulator for optical communication industry is an
    essential element, which is made by the advantages of titanium in:diffused
    process, with low propagation loss, high bit rate, highly application, low driving
    energy, and low signal to noise ratio, low ambient temperature affect being
    adopted in the relevant countries, like Americas, Europe, Japan, etc....... the
    island or cross‐border fiber‐optic network in submarine cables. And Taiwan has
    also carried out related research and development by way of industry‐university
    cooperation, achieved its related products can be developed independently,
    keeping up with the world countries, wish to complete a variety upgrading and
    development of related industries.
    In this thesis using the 1550nm light source to produce a ultra‐fast electrooptic
    modulator with 3Gbps bandwidth. We used a Z‐cut lithium niobate crystal,
    using its high electro‐optic coefficient, and in accordance with the principles of
    electro‐optic effect, Mach‐Zehnder interferometer waveguide is designed by
    using commercial software R‐Soft, the type of waveguide was produced with
    titanium in:diffused process, to design the waveguide width of 7μm, arm gap
    width of 60μm, S‐Bend length of 6000μm single‐mode transported in Mach‐
    Zehnder interferometer structure. Electrode design using a commercial software
    “High Frequency Structure Simulator, HFSS” and layout the coplanar waveguide
    electrode structure which suit on high‐frequency electrical signal transmission,
    driving electrode of modulator was made by gold achieved the bandwidth(S21)
    of electrical transmission to 40GHz or more, the reflection signal (S11) of
    electrical transmission and less than ‐18dB. We use silicon dioxide as
    conventional buffer layer on semiconductor industry with atomic vapor
    deposition equipment, in order to reach our velocity matching conditions and
    thickness of buffer layer is 1μm to suit the modulator design. And we try to reach
    a better velocity matching conditions, we must use thicker electrodes structure,
    so we developed the electroplating systems, using eco‐friendly gold plating
    solution as material, successfully fabricated thickness of electrode up to 21μm
    at ambient temperature at 35 ℃
    Finally we achieved the total length of 3.4cm, the propagation loss of
    straight waveguide under TM mode transmission is 0.8735dB / cm, while Mach‐
    Zehnder interferometer propagation loss is 0.9911 dB / cm under TM mode, we
    use Network Analyzer to measure the S‐parameter which bandwidth(S21) up to
    21.3GHz and reflection(S21) signal are lower than ‐15dB, and achieved the
    frequency response of 3Gbps bandwidth under driving voltage is 6V with the Eye‐
    Diagram.

    第一章 緒論 ............................................................................................................. 1 1.1 前言 .................................................................................................................. 1 1.2 研究動機與歷史回顧 ........................................................................................ 1 1.3 研究目的 .......................................................................................................... 2 1.4 論文架構 .......................................................................................................... 2 第二章 原理介紹 ...................................................................................................... 4 2.1 鈮酸鋰電光強度調製器 .................................................................................... 4 2.2 鈮酸鋰晶體 ....................................................................................................... 6 2.2.1 晶體特性 ..................................................................................................... 6 2.2.2 電光效應 ..................................................................................................... 8 2.3 鈮酸鋰鈦擴散光波導 ...................................................................................... 12 2.3.1 馬氏干涉儀之設計 ................................................................................... 12 2.4 行波式(TRAVELING WAVE)電極結構 ................................................................... 15 2.4.1 傳統式電極結構 ....................................................................................... 15 2.4.2 CPW(CO-PLANAR WAVEGUIDE) 共平面波導電極結構 .................................... 16 2.5 快速電光強度調製器之系統化特性 ............................................................... 21 2.5.1 速度匹配 ................................................................................................... 21 2.5.2 調製頻寬 ................................................................................................... 22 2.5.3 半波電壓VΠ ............................................................................................... 23 2.5.4 電光耦合效率 ........................................................................................... 24 第三章 實驗設備機台與流程 ................................................................................. 26 3.1 實驗使用之機台設備 ...................................................................................... 26 3.1.1 光阻旋轉塗佈機 (SPINNER) ...................................................................... 26 3.1.2 光罩對準曝光機 (MASK ALIGNER 6) .......................................................... 26 3.1.3 紫外線臭氧光阻去除機 (UV-OZONE) ....................................................... 27 3.1.4 磁控式電子金屬蒸鍍機 (E-GUN/THERMAL) ............................................... 28 3.1.5 電鍍設備 (ELECTROPLATING) ...................................................................... 30 3.2 實驗流程 ........................................................................................................ 31 3.2.1 製程流程簡介 ........................................................................................... 31 3.2.2 黃光製作流程 ........................................................................................... 32 v 3.2.3 蒸鍍鈦薄膜製作流程 ............................................................................... 33 3.2.4 鈦薄膜擴散製作流程 ............................................................................... 33 3.2.5 緩衝層製作流程 ....................................................................................... 35 3.2.6 電極製作流程 ........................................................................................... 35 3.2.7 薄電極蝕刻流程 ....................................................................................... 37 3.2.8 端面拋光流程 ........................................................................................... 38 第四章 結果與討論 ................................................................................................ 40 4.1 鈦波導折射率量測 ......................................................................................... 40 4.2 鈦波導損耗量測 ............................................................................................. 42 4.3 電極厚度與平整度量測 .................................................................................. 44 4.4 CPW 電極結構頻寬量測 .................................................................................... 48 4.5 電光轉換訊號響應量測 .................................................................................. 50 第五章 結論與未來展望 ........................................................................................ 60 5.1 結論 ................................................................................................................ 60 5.2 未來展望 ........................................................................................................ 61 5.2.1 快速光學調製器的相關應用 ................................................................... 61 5.2.2 調製頻寬的改善 ....................................................................................... 62 5.2.3 驅動電壓的改善 ....................................................................................... 64 5.2.4 訊噪(CHIRP)與工作點偏移(DC-DRIFT)改善 ............................................ 64 5.2.5 波導與基板的改善與應用 ....................................................................... 65 5.2.6 積體光路的應用與整合 ........................................................................... 65 參考資料 ................................................................................................................... 69

    [1] I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, "Lithium niobate ridge waveguide
    Modulator, " Appl. Phys. Lett., vol. 24, no. 12, pp. 622-624, Jun. 1974.
    [2] M. Izutsu, Y. Yamane, and T. Sueta, "Broad-band traveling-wave modulator using a LiNb03 optical
    Waveguide," IEEE J. Quantum Electron., vol. 13, no. 4, pp. 287-290, Apr. 1977.
    [3] O. Mikami, J. Noda, and M. Fukuma, "Directional coupler type light modulator using LiNb03
    waveguides;' Trans. IEICE Japan, vol. E-61, no. 3, pp. 144-147, Mar. 1978.
    [4] R. C. Alferness, R. V. Schmidt, and E. H. Turner, "Characteristics of Ti-diffused LiNb03 optical
    directional couplers," Appl. Opt., vol. 18, no. 23, pp. 4012-4018, Dec. 1979.
    [5] M. Kondo, Y. Tanisawa, Y. Ohota, T. Aoyama, and R. Ishikawa, "Low-drive-voltage and low-loss
    polarization-independent LiNb03 optical waveguide switches;' Electron. Lett., vol. 23, no. 21, PP·
    1167-1169, Oct. 1987.
    [6] L. Thylen, "Integrated optics in LiNb03: Recent developments in devices for telecommunications",
    J. Lightwave Technol., vol. 6, no. 6, pp. 847-861, Jun. 1988.
    [7] M. Fukuma, J. Noda, and H. Iwasald, "Optical properties in titanium-diffused LiNb03 strip
    Waveguide, " J. Appl. Phys., vol. 49, no. 7, pp. 3693-3698, Jul. 1978.
    [8] T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, "Water vapor effects on optical characteristics
    in Ti:LiNb03 channel waveguides," Appl. Opt., vol. 30, no. 9, pp. 1085-1089, Mar. 1991.
    [9] G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElahanon, and A. S. Greenblatt, "40 GHz,
    low half-wave voltage Ti:LiNb03 intensity modulator," Electron. Lett., vol. 28, no. 9, pp. 826-827,
    Apr. 1992.
    [10] M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, "Fully packaged, broad-band
    LiNb03 modulator with low drive voltage," IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 792-794,
    Jul. 2000.
    [11] W. M. Robertson, G. Arajavalingam, and G. Kopcsay, "Broadband microwave dielectric properties
    of lithium niobate," Electron. Lett., vol. 27, no. 2, pp. 175-176, Jan. 1991.
    [12] K. Noguchi, H. Miyazawa, and 0. Mitomi. "Millimeter-wave Ti:LiNb03 optical modulators,"
    J. Lightwave Technol., vol. 16, no. 4, pp. 615-619, Apr. 1998.
    [13] K. Kubota, J. Noda, and 0. Mikami, "Traveling-wave optical modulator using directional coupler
    LiNb03 waveguide," IEEE J. Quantum Electron., vol. 16, no. 7, pp. 754-760, Jul. 1981.
    [14] K. Kawano, T. Kitoh, 0. Mitomi, T. Nozawa, and H. Jumonji, ''A wide-band and low-driving-power
    phase modulator employing a Ti:LiNb03 optical waveguide at 1.5 11m wavelength, '' IEEE Photon.
    Technol. Lett., vol. 1, no. 2, pp. 33-34, Feb. 1989.
    [15] G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt,
    "Performance and modeling of broadband LiNb03 traveling wave optical intensity modulators, "
    IEEE f. Lightwave Techno/., vol. 12, no. 10, pp. 1807-1818, Oct. 1994.
    70
    [16] O. Mitomi, K. Noguchi, and H. Miyazawa, "Broadband and low driving-voltage LiNb03 optical
    Modulators," IEE Proc.-Optoelectron., vol. 145, no. 6, pp. 360-364, Dec. 1998.
    R. V. Schmidt and I. P. Kaminow, "Metal diffused optical waveguides in LiNb03, Appl. Phys. Lett.,
    vol. 25, no. 8, pp. 458-460, Oct. 1974.
    [17] T. R. Ranganath and S. Wang, "Ti-diffused LiNb03 branched-waveguide modulators: Performance
    and design," IEEE J, Quantum Electron., vol. 13, no. 4, pp. 290-295, Apr. 1977.
    [18]B.-U. Chen and A. C. Pastor, "Elimination of Lip out-diffusion waveguide in titanium-diffused
    LiNb03," Appl. Phys. Lett., vol. 30, no. 11, pp. 570-571, Jun. 1981.
    [19]J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, 0. Mitomi, and
    M. Minakata, "40-Gb/s X-cut LiNb03 optical modulator with two-step back-slot structure," IEEE
    J. Lightwave Technol., vol. 20, no. 12, pp. 2110-2114, Dec. 2002.
    [20]K. Suzuki, T. Yamada, 0. Moriwald, H. Takahashi, and M. Okuno, "Polarization-insensitive
    operation of lithium niobate Mach-Zehnder interferometer with silica PLC-based polarization
    diversity circuit," IEEE Photon. Technol. Lett., vol. 20, no. 10, pp. 773-775, May 2008.

    QR CODE
    :::