| 研究生: |
屈誠銘 Cheng-ming Chu |
|---|---|
| 論文名稱: |
控制變數法在數值選擇權評價模型之應用分析 Applying the Control Variate Technique to Numerical Option Pricing Models |
| 指導教授: |
張森林
San-Lin Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 控制變數 、蒙地卡羅模擬法 、障礙式選擇權 、亞式選擇權 、美式選擇權 |
| 外文關鍵詞: | control variate, Monte Carlo simulation, barrier option, Asian option, spread option, American option |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
選擇好的控制變數可依循兩個原則:首先是找尋一選擇權與欲評價之選擇權滿足相同之偏微分方程式;其次是讓控制變數選擇權的邊界條件與欲評價之選擇權越相似越好。
文中將檢視不同型態之選擇權當作欲評價之選擇權包括:美式選擇權,障礙式選擇權,亞式選擇權,價差式選擇權。結果顯示在每一個例子中,選擇較佳的控制變數可以使控制變數法更加強蒙地卡羅模擬法的估計效率,此外也驗證出蒙地卡羅模擬法可以正確的區分出控制變數的優劣。
A good control variate has to satisfy two conditions: The first is that a good control variate satisfies the same PDE satisfied by the target option. The second is that the boundary condition for the control variate is similar to the boundary condition for the target option. Options under consideration in this paper include American put options, barrier options, Asian options, and spread options. The result shows that a good control variate can improve the efficiency of the simulation dramatically and a good control variate can be differentiated from a bad control variate in a Monte Carlo simulation.
References:
Barone-Adesi, G. and R. Whaley, (1987):”Efficient Analytical Approximation of American Option Values.” Journal of Finance, 42, pp.301-320.
Barraquand, J. and D. Martineau, (1995):”Numerical Valuation of High Dimensional Multivariate American Securities.” Journal of Financial and Quantitative Analysis, 30, pp. 383-405.
Boyle, P.P. (1977): ”Options: A Monte Carlo Approach.” Journal of Financial Economics, 4,pp. 323-338.
Derman, E., I. Kani, D. Ergener, and I. Bardhan, (1995):”Enhanced Numerical Methods for Options with Barriers.” Financial Analysts Journal, Nov-Dec, pp. 65-74.
Derman, E., I. Kani, D. Ergener, (1995):”Static Options Replication.” Journal of Derivatives, summer, pp. 78-95.
Geske, R. and H.E. Johnson, (1984):” The American Put Valued Analytically.” Journal of Finance, 39,pp. 1511-1524.
Haykov, J.M. (1993):”A Better Control Variate for Pricing Standard Asian Options.” Journal of Financial Engineering, 2, 3, pp. 207-216.
Hull, J. and A. White, (1988): "The Use of Control Variate Technique in Option-Pricing." Journal of Financial and Quantitative Analysis, 23, pp. 237-251.
Hull, J. and A. White, (1990): "Valuing Derivative Securities Using the Explicit Finite Difference Method." Journal of Financial and Quantitative Analysis, 23, 3, pp. 237-252.
Ingersoll, Jr. J.E. (1998):”Approximating American options and other financial contracts using barrier derivatives.” The Review of Financial Studies, 2, pp. 85-112.
Johnson, H. (1983): "An Analytical Approximation for the American Put Price." Journal of Financial and Quantitative Analysis, 18, pp. 141-148.
Johnson, H. (1987): "Options on the Maximum or the Minimum of Several Assets." Journal of Financial and Quantitative Analysis, 22, 3.
Ju, N. (1998): “ Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function.” The Review of Financial Studies, 3, pp. 627-646.
Kamna, A.G.Z. and A.C.F. Vorst, (1990):”A pricing method for options based on average asset values.” Journal of Banking and Finance,14, pp.113-129.
Kim, I.J. (1990):” The Analytical Valuation of American Options.” Review of Financial Studies, 3, pp. 547-572.
Longstaff, F.A. and E.S. Schwartz, (2001):” Valuing American Options by Simulation: A Simple Least-Squares Approach.” Review of Financial Studies, 14, pp. 113-147.
MacMillan, L.W. (1986):”An Analytical Approximation for the American Put Price.” Advances in Futures and Options Research, 1,pp. 119-139.
Merton, R.C. (1973):”Theory of Rational Option Pricing.” Bell Journal of Economics and Management Science, 4, pp. 141-183.
Omberg, E. (1987): “The valuation of American Puts with Exponential Exercise Policies.” Advances in Futures and Options Research, 2,pp. 117-142.
Rubinstein, M. and E. Reiner, (1991):”Breaking down the barriers.” Risk, 4, pp. 28-35.
Stulz, R. M. (1982): "Options on the Minimum or the Maximum of Two Risky Assets: Analysis and Applications." Journal of Financial Economics, 10, pp. 161-185.
Tilly, J.A. (1993):” Valuing American Options in a Path Simulation Model.” Transactions of the Society of Actuaries, 45, pp. 83-104.
Turnbull, S. and L.M., Wakeman, (1991):”A quick algorithm for pricing European average options.” Journal of Financial and Quantitative Analysis, 26,pp. 371-389.