跳到主要內容

簡易檢索 / 詳目顯示

研究生: 姜孟志
Meng-zhi Chiang
論文名稱: 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究
Applying micro chip system in mechanical and chemical inductions of human PDMCs differentiation
指導教授: 曹嘉文
Chia-wen Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 102
中文關鍵詞: 灌注式培養分化幹細胞微流體微機電製程
外文關鍵詞: differentiation, stem cell, microfluidic, perfusion culture, MEMS
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幹細胞本身具有良好的自我再生特性與分化成不同細胞的能力,因此在再生醫學的應用上逐漸受到重視,但也因為幹細胞的分化容易受到環境因子的影響,使得幹細胞在臨床應用上仍然面臨嚴峻的挑戰。利用微機電製程技術所設計的微流體晶片系統能夠提供給幹細胞一個更加精確的控制且接近人體體內尺度(In vivo-like)的培養環境,此外,微流體晶片還具有體積小、減少汙染、降低樣本耗費與試劑成本以及可在螢光顯微鏡下進行即時觀察等特點。
    本研究的目的是在建立起一個新型的微流體培養平台提供給胎盤幹細胞(PDMCs)使用,讓胎盤幹細胞可以穩定地進行長時間的培養與分化。實驗結果證實此裝置可滿足生物相容性之需求,細胞可以在連續灌注的培養條件下進行超過10天的長期培養。另外,本研究也利用藥物IBMX讓胎盤幹細胞分化成神經細胞,並於投藥過程的前10分鐘給予三組不同注入流率(0.083 μL/min、2 μL/min與30 μL/min)之流場刺激,並觀察在刺激之後的72小時內其對細胞分化之影響。實驗結果顯示較高的流率下具有增進細胞提早分化的發生。


    Stem-cell biology for the applications of regenerative medicine is gathering great interests because of their self-renewal property and ability to differentiate into many types of cells. Since differentiation of stem cells is sensitive to environmental factors, stem cells for clinical use are encountering a vast challenge. The microfluidic chip system fabricated by micro electro mechanical systems (MEMS) technology is able to provide microenvironments which can mimic in vivo surroundings and to be well-controlled. Besides, these devices are characterized as a smaller size, less sample/reagent consumption, reduced risk of contamination, and real-time optical analysis.
    In this study, a new microfluidic chip system is developed which can culture and differentiate PDMCs in in vivo-like microenvironments. Experimental results indicate that the microfluidic chip system can achieve a well biocompatibility, and the cells can be cultured under perfusion in the chips over 10 days. We also used IBMX to induce the differentiation of PDMCs into neuron within temporary fluid flow stimuli under the various rate at 0.083, 2 and 30 μL/min, respectively. The results illustrate that the fluid flow could promote cells differentiation earlier at higher flow rates.

    摘要 I ABSTRACT . II 誌謝 III 目錄 IV 圖目錄 . VIII 表目錄 XII 第一章 緒論 1 1.1 前言 . 1 1.2微機電系統與微流體晶片 . 2 1.3文獻回顧 4 1.4研究動機 . 10 1.5論文架構 . 11 第二章 設計與製程 12 2.1 製程設備與耗材 . 12 2.1.1 製程設備與實驗儀器 12 2.1.2 製程材料與實驗耗材 13 2.2 材料選擇 13 2.2.1 SU-8 13 2.2.2 聚二甲基矽氧烷 15 2.3 黃光製程 16 2.3.1 光罩製作 17 2.3.2 晶圓清潔(Wafer cleaning) . 18 2.3.3 塗佈光阻(Spin coating) 19 2.3.4 軟烤(Soft bake) 21 2.3.5 曝光(Exposure) 22 2.3.6 曝後烤(Post exposure bake) 22 2.3.7 顯影(Develop) 23 2.3.8 硬烤(Hard bake) 23 2.4 翻模過程 24 2.5 脫模與CONNECTOR製作 24 2.6 氧電漿接合 25 2.7 實驗系統架設 29 2.7.1 微流體晶片 . 29 2.7.2 系統環境控制元件 30 2.7.3 光學觀測裝置 . 30 第三章 實驗方法 32 3.1 實驗儀器與藥品 . 32 3.1.1 使用儀器 32 3.1.2 實驗藥品 33 3.2 藥品配製 34 3.3 細胞來源與培養方法 37 3.4 實驗操作流程 41 3.4.1 實驗前的準備 . 42 3.4.2 細胞的種植 . 46 3.4.3 藥物誘導分化 . 47 3.4.4 染色步驟 49 3.5 細胞影像處理與分析 55 3.5.1 細胞數量測定 . 55 3.5.2 分化率的分析 . 55 第四章 實驗結果與討論 56 4.1 微晶片系統的培養 56 4.2結合藥物與流場之分化結果 62 4.2.1 流率0.083 μL/min 62 4.2.2 流率2 μL/min 66 4.2.3 流率30 μL/min 69 4.3 實驗結果討論 75 第五章 結論與未來展望 80 5.1 結論 . 80 5.2 未來展望 81 參考文獻 . 83

    [1] Mimeault, M., R. Hauke, and S.K. Batra, Stem cells: A revolution in therapeutics - Recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology & Therapeutics, 2007. 82(3): p. 252-264.
    [2] Bustillo, J.M., R.T. Howe, and R.S. Muller, Surface micromachining for microelectromechanical systems. Proceedings of the Ieee, 1998. 86(8): p. 1552-1574.
    [3] West, J., et al., Micro total analysis systems: Latest achievements. Analytical Chemistry, 2008. 80(12): p. 4403-4419.
    [4] Weibel, D.B., P. Garstecki, and G.M. Whitesides, Combining microscience and neurobiology. Current Opinion in Neurobiology, 2005. 15(5): p. 560-567.
    [5] Randall, G.C. and P.S. Doyle, Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(31): p. 10813-10818.
    [6] Yang, S.Y., J.L. Lin, and G.B. Lee, A vortex-type micromixer utilizing pneumatically driven membranes. Journal of Micromechanics and Microengineering, 2009. 19(3).
    [7] Huang, C.W. and G.B. Lee, A microfluidic system for automatic cell culture. Journal of Micromechanics and Microengineering, 2007. 17(7): p. 1266-1274.
    [8] Cimetta, E., et al., Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of beta-catenin signaling. Lab on a Chip, 2010. 10(23): p. 3277-3283.
    [9] Yen, B.L., et al., Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Engineering Part A, 2008. 14(1): p. 9-17.
    [10] Phillips, B.W. and J.M. Crook, Pluripotent Human Stem Cells A Novel Tool in Drug Discovery. Biodrugs, 2010. 24(2): p. 99-108.
    [11] Brignier, A.C. and A.M. Gewirtz, Embryonic and adult stem cell therapy. Journal of Allergy and Clinical Immunology, 2010. 125(2): p. S336-S344.
    [12] Preston, S.L., et al., The new stem cell biology: something for everyone. Journal of Clinical Pathology-Molecular Pathology, 2003. 56(2): p. 86-96.
    [13] Jiang, Y.H., et al., Pluripotency of mesenchymal stem cells derived from adult marrow (vol 418, pg 41, 2002). Nature, 2007. 447(7146): p. 879-880.
    [14] Lee, O.K., et al., Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 2004. 103(5): p. 1669-1675.
    [15] Yen, B.L., et al., Isolation of multipotent cells from human term placenta. Stem Cells, 2005. 23(1): p. 3-9.
    [16] De Coppi, P., et al., Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 2007. 25(1): p. 100-106.
    [17] Du, H. and H.S. Taylor, Stem Cells and Female Reproduction. Reproductive Sciences, 2009. 16(2): p. 126-139.
    [18] Human Term Placenta a New Abundant Source of Hematopoietic Cells-A Potent Alternative for Cord Blood and Bone Marrow. Experimental Biology and Medicine, 2009. 234(7): p. Vi-Vi.
    [19] Dawe, G.S., X.W. Tan, and Z.C. Xiao, Cell migration from baby to mother. Cell Adh Migr, 2007. 1(1): p. 19-27.
    [20] Li, G., et al., Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: Implication in the migration. Proteomics, 2009. 9(1): p. 20-30.
    [21] Wu, H.W., et al., The culture and differentiation of amniotic stem cells using a microfluidic system. Biomedical Microdevices, 2009. 11(4): p. 869-881.
    [22] Kim, L., et al., A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip, 2007. 7(6): p. 681-694.
    [23] Kempner, M.E. and R.A. Felder, A Review of Cell Culture Automation. 2002. 7(2): p. 56-62.
    [24] Hung, P.J., et al., Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnology and Bioengineering, 2005. 89(1): p. 1-8.
    [25] Wu, H.W., et al., A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures. Biomedical Microdevices, 2009. 11(6): p. 1297-1307.
    [26] Hung, P.J., et al., A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab on a Chip, 2005. 5(1): p. 44-48.
    [27] Zhang, M.Y., et al., Microfluidic environment for high density hepatocyte culture. Biomedical Microdevices, 2008. 10(1): p. 117-121.
    [28] Chung, B.G., et al., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab on a Chip, 2005. 5(4): p. 401-406.
    [29] Okano, H., Neural stem cells. Japanese Journal of Pharmacology, 2002. 88: p. 25P-25P.
    [30] Deng, W.W., et al., In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochemical and Biophysical Research Communications, 2001. 282(1): p. 148-152.
    [31] Wu, C.C., et al., Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. Journal of Biomechanics, 2008. 41(4): p. 813-821.
    [32] Miyanishi, K., et al., Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Engineering, 2006. 12(6): p. 1419-1428.
    [33] Bieberich, E. and A. Guiseppi-Elie, Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: Contact structures for neuron-to-electrode signal transmission (NEST). Biosensors & Bioelectronics, 2004. 19(8): p. 923-931.
    [34] Ebisawa, K., et al., Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells. Tissue Engineering, 2004. 10(5-6): p. 921-929.
    [35] Sun, S., et al., Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. Faseb Journal, 2007. 21(7): p. 1472-1480.
    [36] Folch, A. and M. Toner, Microengineering of cellular interactions. Annual Review of Biomedical Engineering, 2000. 2: p. 227-+.
    [37] Csete, M., Q&A: what can microfluidics do for stem-cell research? J Biol. 9(1): p. 1.
    [38] Park, S.H., et al., An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Tissue Engineering, 2006. 12(11): p. 3107-3117.
    [39] Figallo, E., et al., Micro-bioreactor array for controlling cellular microenvironments. Lab on a Chip, 2007. 7(6): p. 710-719.
    [40] Piruska, A., et al., The autofluorescence of plastic materials and chips measured under laser irradiation. Lab on a Chip, 2005. 5(12): p. 1348-1354.
    [41] Huh, D., et al., Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Analytical Chemistry, 2007. 79(4): p. 1369-1376.
    [42] Lucchetta, E.M., et al., Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature, 2005. 434(7037): p. 1134-1138.
    [43] Lanniel, M., et al., Substrate induced differentiation of human mesenchymal stem cells on hydrogels with modified surface chemistry and controlled modulus. Soft Matter, 2011. 7(14): p. 6501-6514.
    [44] Lorenz, H., et al., SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering, 1997. 7(3): p. 121-124.
    [45] Chiou, C.H. and G.B. Lee, Minimal dead-volume connectors for microfluidics using PDMS casting techniques. Journal of Micromechanics and Microengineering, 2004. 14(11): p. 1484-1490.
    [46] Slentz, B.E., N.A. Penner, and F.E. Regnier, Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. Journal of Chromatography A, 2002. 948(1-2): p. 225-233.
    [47] 楊奇勳, "利用SU-8 光阻二次塗佈製作2.5D 微結構之製程研究," in 機械所, vol. 碩士. 台灣: 交通大學, 中華民國九十年七月
    [48] MicroChem-“SU-8 3000 Permanent Epoxy Negative Photoresist”

    QR CODE
    :::