跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賈浩平
Hao-Ping Chia
論文名稱: 微脈衝光達及太陽輻射儀之應用:
Application of Micropulse Lidar and Sunphotometer:A study of aerosol optical properties in Chung-Li during 2005-2007
指導教授: 林能暉
Neng-Hui Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 97
語文別: 中文
論文頁數: 125
中文關鍵詞: 消光散射比氣膠光學厚度
外文關鍵詞: Extinction-to-backscattering ratio, Aerosol optical depth
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用微脈衝光達與太陽輻射儀於2005-2007年間在中壢之觀測資料,配合地面觀測資料,氣流軌跡後推及來源區域分類等方法探討在不同季節、不同氣團來源下之氣膠光學特徵。根據太陽輻射儀於2005-2007年所觀測之氣膠光學厚度(AOD500nm)月平均顯示,最高值出現在春季(0.751±0.181)、夏季(0.503±0.216)次之,而秋季(0.392±0.073)最低。至於代表粒徑分布之Ångström exponent440-870nm月平均值介於1.098-1.382之間,變化並不顯著,顯示此三年間,中壢地區垂直氣柱中粗粒與細粒氣膠比例維持相對穩定狀態。此外,進行各季節氣流來源分類與分析比對,結果顯示低層(500m)與中層(2500m)大氣之消光散射比於春季且氣團來自於東南亞與華南時為最高,分別為69±22 sr、64±19 sr,至於高層(5500m)大氣之消光散射比則較無明顯季節及源區差異。在背景狀態、生質燃燒與沙塵個案中,中壢地區氣膠光學厚度變化範圍分別為0.054-1.090、0.435-1.240及0.236- 0.839;而Ångström exponent440-870nm變化範圍則分別為0.882-1.824、0.729-1.302與0.826-1.341。


    The purpose of this study is to characterize the aerosol optical properties measured by the micro-pulse lidar and sunphotometer in Chung-Li during the years of 2005 to 2007. Combining with ground level particle mass concentrations, meteorological data, backward trajectories and air mass source regions, this study also attempts to investigate the characterization of aerosol optical properties with respect to different seasons and regions. The maximum and minimum values of monthly mean aerosol optical depths at 500 nm occurred in spring (0.751±0.181) and autumn (0.392±0.073), respectively. The monthly mean of Ångström exponent 440-870nm ranged from 1.098 to 1.382, indicating a relatively stable ratio of the columnar coarse to fine particle size. Moreover, the maximum values of extinction-to-backscattering ratio of low and middle atmosphere occurred in spring with air mass coming from Southeast Asia and southern China, were 69±22 sr and 64±19 sr, respectively. The ranges of daily mean aerosol optical depths at 500 nm in background condition, biomass burning, and dust cases were 0.054- 1.090, 0.435-1.240, and 0.236-0.839, respectively. For daily mean Ångström exponent440-870nm in background condition, biomass burning, and dust cases, they ranged in 0.882-1.824, 0.729-1.302, and 0.826-1.341, respectively.

    摘要 .................................................. Ι 誌謝 ................................................ IIΙ 目錄 ................................................. IV 表目錄 ............................................... VI 圖目錄 .............................................. VII 第一章 前言 ........................................... 1 1.1 研究動機 .......................................... 1 1.2 研究目的 .......................................... 3 第二章 文獻回顧 ....................................... 4 2.1 氣膠之輻射效應 .................................... 4 2.2 氣膠光學垂直特性 .................................. 6 2.3 消光散射比 …..…................................. 10 第三章 研究方法 ...................................... 12 3.1 研究架構 ......................................... 12 3.2 實驗時間與地點 ................................... 12 3.3 實驗設備與觀測原理 ............................... 13 3.3.1 太陽輻射儀 ..................................... 13 3.3.2 微脈衝光達 ..................................... 15 3.4 氣膠光學特徵參數 ................................. 16 3.4.1 氣膠光學厚度 ................................... 16 3.4.2 Ångström exponent .............................. 17 3.5 定義消光散射比 ................................... 18 第四章 結果與討論 .................................... 20 4.1 中壢地區氣膠光學垂直特性與地面監測資料分析 ....... 20 4.2 中壢地區氣膠光學垂直特性之年際與季節變化 ......... 21 4.3 中壢地區氣膠光學垂直特性在不同來源下之變化 ....... 25 4.4 個案分析 ......................................... 28 4.4.1 生質燃燒個案 ................................... 29 4.4.2 沙塵個案I ...................................... 31 4.4.3 沙塵個案II ..................................... 33 4.4.4 個案比較 ....................................... 35 4.4.5 背景狀態、生質燃燒與沙塵個案討論 ............... 36 第五章 結論與未來展望 ................................ 38 5.1 結論 ............................................. 38 5.2 未來展望 ......................................... 41 參考文獻 ............................................. 42 附表 ................................................. 47 附圖 ................................................. 57

    王聖翔,2007:亞洲生質燃燒氣膠對區域環境與大氣輻射之衝擊及對氣象場的反饋作用。國立中央大學大氣物理研究所博士論文,中壢。
    江智偉,1999:偏振雷達對卷雲的量測。國立中央大學物理研究所碩士論文,中壢。
    江智偉,2005:對流層氣膠光學性質之研究。國立中央大學物理研究所博士論文,中壢。
    江智偉,倪簡白,2006:光達遙測中壢地區夜間邊界層變化和低層噴流之討論。大氣科學第三十五期第一號,1-11。
    林能暉、黃景祥及彭啟明,2001:空氣品質異常偶發事件之認定及評估,EPA-90-FA11-03-90D014,行政院環境保護署。
    林和駿,林博雄及劉紹臣,2005:台灣南北城市氣膠光學厚度的特徵,中華民國國際氣膠科技研討會,203-212。
    吳承翰,2002:亞洲沙塵暴之模擬。國立中央大學大氣物理研究所碩士論文,中壢。
    徐睿鴻,2007:鹿林山與中壢氣膠光學垂直特性之監測與比較。國立中央大學大氣物理研究所碩士論文,中壢。
    郭俊江,2006:光達及太陽輻射儀之應用:2005年中壢氣膠光學垂直特性及邊界層高度之變化。國立中央大學大氣物理研究所碩士論文,中壢。
    陳進煌,1995:氣流軌跡模式在大氣污染物長程輸送上之運用。國立中央大學大氣物理研究所碩士論文,中壢。
    陳韡鼐、林博雄、陳自光、周崇光及陳正平,2006:Diurnal Cycle of Mixing Height Measured by Lidar,中華民國國際氣膠科技研討會。
    Ackerman, J., 1998, The extinction-to-backscatter ratio of tropospheric aerosol:A numerical study, J. Atmos. Oceanic Technol., 15, 1043-1050.
    Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000, Reduction of tropical cloudiness by soot, Science, 288, 1042-1047.
    Anderson, T. L., Masonis, S. J., Covert, D. S., Charlson, R. J., and Rood, M. J., 2000, In situ measurement of the aerosol extinction-to- backscatter ratio at a polluted continental site, J. Gerphys. Res., 105, 26907-26916.
    Andreae, M. O., C. D. Jones, and P. M. Cox, 2005, Strong present-day aerosolcooling implies a hot future, Nature, 435, 1,187-1,190.
    Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., and Michaelis, W., 1992a, Combined raman elastic- backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio, Applied Physics B:Lasers and Optics, 55, 18-28.
    Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. Scott, and I. H. Hwang, 2002, Full-time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites:Instrument and Data Processing, J. Atmos. Oceanic Technol., 19, 431-442.
    Chen, W. -N., F. -J. Tsai, Charles C. -K. Chou, S. -Y. Chang, Y. -W. Chen, and J. -P. Chen, 2007, Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan, Atmos. Environ., 41, 7698-7714.
    Chou, M. -D., P. -H. Lin, P. -L. Ma, and H. -J. Lin, 2006, Effects of aerosols on the surface solar radiation in a tropical urban area. J. Gerphys. Res., 111, D15207, doi:10.1029/2005JD006910.
    Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B. Chen, B. Chatenet, L. Gomes, X.-Y. Zhang, S. -C. Tsay, Q. Ji, D. Giles, and I. Slutsker, 2005, Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid- Pacific, J. Gerphys. Res., 110, D06202, doi:10.1029/2004JD005274.
    Flamant, C., J. Pelon, P. H. Flamant, and P. Durand, 1997, Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer, Boundary-Layer Meteorol., 83, 247-284.
    Ganguly, D., A. Jayaraman, T. A. Rajesh, and H. Gadhavi, 2006, Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing, J. Gerphys. Res., 111, D15217, doi:10.1029/2005JD007029.
    Hansen, J., M. Sato, and R. Ruedy, 1997, Radiative forcing and climate response, J. Geophys. Res., 102, D6, 6831-6864.
    Haywood, J. M., and O. Boucher, 2000, Estimates of the direct and indirect radiative forcing due to tropospheric aserosol:A review, Reviews of Geophysics, 38, 513-543.
    Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, 1998, AERONET-A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 66, 1-16.
    Intergovernmental Panel on Climate Change (IPCC), 2001, Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
    Intergovernmental Panel on Climate Change (IPCC), 2007, Climate Change 2007: Technical Summary, edited by F. Joos et al., Cambridge Univ. Press, New York.
    Jacobson, M. Z., 2004, The short-term cooling but long-term global warming due to biomass burning, J. Clim., 17, 2909-2926.
    Klett, J. D., 1981, Stable analytical inversion solution for processing lidar returns, Applied Optics, 20, 211-220.
    Liu, Z., Sugimoto, N., and Murayama, T., 2002, Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar, Applied Optics, 41, 2760-2767.
    Lohmann, U., and M. Wild, 2005, Solar Dimming, Global Change NewsLetter, 63, 21-22.
    Menut, L., C. Flamant, J. Pelon, and P. H. Flamant, 1999, Urban boundary-layer height determination from lidar measurements over the Paris area, Applied Optics, 38, 945-954.
    Niranjan, K., Madhavan, B. L., and Sreekanth V., 2007, Micro pulse lidar observation of high altitude aerosol layers at Visakhapatnam located on the east coast of India. Geophys. Res. Lett., 34, L03815, doi:10.1029/2006GL028199.
    Ogunjobi, K. O., Z. He, K. W. Kim, and Y. J. Kim, 2004, Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea, Atmos. Environ., 38, 1313-1323.
    Perez, C., S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbosch, and V. E. Cachorro, 2006, A long Saharan dust event over the western Mediterranean:Lidar, Sun photometer observations, and regional dust modeling, J. Geophys. Res., 111 , D15214 doi:10.1029/ 2005JD006579.
    Sano, I., S. Mukai, Y. Okada, B. N. Holben, S. Ohta, and T. Takamura, 2003, Optical properties of aerosols during APEX and ACE-Asia experiments, J. Gerphys. Res., 108, D23, doi:10.1029/2002 JD003263.
    Satheesh, S. K., V. Vinoj, and K. Krishna Moorthy, 2006, Vertical distribution of aerosols over an urban continental site in India inferred using a micro pulse lidar, Geophys. Res. Lett., 33, L20816, doi:10.1029/2006GL027729.
    Takamura, T., Sasano, Y., and Hayasaka, T., 1994, Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements, Applied Optics, 33, 7132-7140.
    Twomey, S., 1974, Pollution and the planetary albedo, Atmos. Environ., 8, 1251-1256.
    Voss, K. J., E. J. Welton, P. K. Quinn, J. Johnson, A. Tompson, and H. R. Gordon, 2001, Lidar measurements during Aerosols99, J. Gerphys. Res., 106, 20821-20832.
    Wang, S. H., Lin, N. H., Chou, M. D., and Woo, J. H., 2007, Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P. J. Geophys. Res., 112 , D10222 doi:10.1029/ 2006JD007564.
    Welton, E. J., et al., 2000, Ground-based lidar measurements of aerosols during ACE-2:Instrument description, results, and comparisons with other ground-based and airborne measurements, Tellus, Ser. B, 52, 635-650.
    Welton, E. J., K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, 2002, Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars, J. Gerphys. Res., 107, 8019, doi:10.1029/2000JD000038.

    QR CODE
    :::