| 研究生: |
劉耀斌 Yao-bin Liu |
|---|---|
| 論文名稱: |
剛性鋪面機場鋪面分類指數分析之研究 Reappraisal of Pavement Classification Number Method for Rigid Airfield Pavements |
| 指導教授: |
林志棟
Jyh-Dong Lin 李英豪 Ying-Haur Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 200 |
| 中文關鍵詞: | 航機分類指數/機場鋪面分類指數 、機場剛性鋪面 、等額年起飛次數 、鋪面評估 |
| 外文關鍵詞: | ACN/PCN, Equivalent Annual Departure, Pavement Evaluation, Rigid Airfield Pavements |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
國際民航組織(International Civil Aviation Organization, ICAO)為有效的評估不同航機對於現有鋪面之影響,以及了解現有鋪面之有效承載能力,於1983年公佈ACN/PCN方法。近年來,美國聯邦航空總署(Federal Aviation Administration, FAA)提出AC 150/5335-5B初稿做為PCN評估之依據,本研究主要針對各PCN評估方法之發展理論背景,以及各影響PCN決定之因子進行探討。
研究中首先針對各單位以往所提出之PCN評估方法進行回顧,並探討航機種類、輪軸荷重、路基土壤強度以及混合交通量等因素,對於PCN評估之影響。並在研究中亦評估利用CDF方法(cumulative damage factor method)進行等額交通量轉換之流程的詳細計算與分析。不論是舊有的PCN決定方法或是新的CDF方法,皆受到等額交通量轉換、不同應力模式採用以及路基土壤強度極大之影響。
航機分類指數之定義為:根據不同鋪面類型及路基強度,在不需指定鋪面厚度下,以此數值來表示一單獨飛機對鋪面的影響。航機分類指數為在不同路基土壤等級下之推導單輪重,在其決定過程中利用參考厚度之觀念,利用荷重來決定航機對鋪面之影響,因此省略鋪面之厚度。一般而言鋪面厚度對於鋪面應力之影響遠大於路基土壤強度。因此在研究中以此觀念做為出發點,建議一標準路基土壤等級(B級)做為後續ACN評估之依據。
機場鋪面分類指數之定義為:不指定任一特殊機型下,以此數值來表示鋪面承載荷重的能力;亦即不需任何起降限制條件下,機場鋪面所能提供之承載強度數值。在PCN評估過程中限制了允許工作應力為399 psi(2.75 MPa)。就混凝土疲勞以及航機重覆載重次數關係而言,當應力比(允許工作應力與混凝土抗彎強度之比值)很小時,其航機之起降次數可為無限次。而ACN/PCN之評估流程即以此為主要發展理念。因此在PCN評估時可不考量航機起降次數,僅需考量鋪面強度之影響。
本研究針對所發現之問題,以鋪面力學與鋪面疲勞效應做為出發點,建議一雙輪單軸重180,000 lbs之標準航機,配合Lee et. al所發展之中央荷重應力預估模式,建立各航機與標準航機之等額起飛次數轉換因子。並配合前述標準路基土壤(B級)建立一「改良式機場剛性鋪面PCN評估流程」,其中包含考量交通量以及不考量交通量之評估方法。
在現地鋪面結構強度代表值評估方面,本研究以統計方法為理論基礎,採用中央極限定理以及信賴區間(95%信心水準),並配合上述建立之等額起飛次數轉換因子,利用標準路基土壤強度之理念簡化PCN評估之代碼。在經由現地實際案例分析與驗證後,本研究所建議之方法相較於現有之PCN評估方法,確實可得到一穩定之PCN評估數值。
The International Civil Aviation Organization (ICAO) has adopted the Aircraft Classification Number / Pavement Classification Number (ACN/PCN) method as the standardized method for reporting airfield pavement bearing strength since 1980’s. Recently, the Federal Aviation Administration (FAA) has been circulating a draft Advisory Circular 150/5335-5B to provide specific guidance and revisions on how to arrive at a more reliable PCN. The primary objectives of this study are to investigate its fundamental principles, the reasoning of the newly-proposed revisions, and the effects on the PCN determination.
The original development of ACN/PCN methodology and several rigid airfield pavement design procedures were first reviewed. Parameter studies on the effects of ACN/PCN determinations due to different aircraft types, gear loads, subgrade strengths, traffic mix, etc. were subsequently conducted. The newly revised approach by introducing a cumulative damage factor method for computing PCN based on equivalent traffic was also discussed. The results indicated that the PCN method is significantly influenced by the conversion of equivalent annual departures of the selected critical airplane, interior or edge stress determination, and a representative is-situ subgrade modulus for both the existing approach and the newly revised approach.
ACN is originally defined as a number expressing the relative effect of an airplane at a given weight on a pavement structure for a specified standard subgrade. The concept of a single wheel load was employed to define the interaction of various gear loads and pavement without specifying pavement thickness as an ACN parameter. Since pavement thickness generally has much higher structural effect than subgrade strength, subgrade strength can be omitted along with pavement thickness when determining the relative effect. It was therefore proposed that a specific subgrade category (say “B”) be used for ACN determination.
PCN is originally defined as a number expressing the load-carrying capacity of a pavement for “unrestricted operations” and a concrete working stress of 399 psi (2.75 MPa) was also assumed in this ACN/PCN approach. What were “unrestricted operations” really meant? According to the specified concrete fatigue relationship, unlimited number of load repetitions is achievable when the stress ratio (defined by the ratio of critical stress and flexural strength) is relatively small. In addition to no weight restriction (up to maximum takeoff weight), unrestricted operations are preferably considered to be able to sustain “unlimited number of load repetitions” as well.
As such, a standard aircraft with a dual wheel gear load of 180,000 lbs was introduced. For consistency consideration, interior stress prediction models developed by Lee, et al. was used for critical stress estimations. An equivalent annual departure conversion factor was developed in this study using the concept of cumulative damage factors. A specific subgrade category (say “B”) was adopted. A modified PCN determination approach either with or without traffic mix consideration was subsequently developed.
Based on the results of nondestructive testing, the concepts of random sampling, central limit theorem, and confidence intervals for hypothesis testing were adopted to determine various design inputs. It was also proposed that a single representative design input for the entire runway pavement be determined by the lower limit of 95% confidence level to derive a more consistent and repeatable PCN value. Several case studies were conducted to illustrate the potential problems of the existing PCN procedures and the benefits of the proposed revisions.
1、 AASHTO (1993), AASHTO Guide for Design of Pavement Structures, Published by the American Association of State Highway and Transportation Officials.
2、 AASHTO (1998), Supplement to the AASHTO Guide for Design of Pavement Structures, Part II, - Rigid Pavement Design & Rigid Pavement Joint Design, American Association of State Highway and Transportation Officials, Washington, D.C.
3、 Boeing Commercial Airplane Group (1998), “Precise methods for estimating pavement classification number,” Boeing commercial airplane group airport technology organization Report D6-82203.
4、 ASTM (1998), “Standard Test Method for Airport Pavement Condition Index Surveys” American Society of Testing and Materials, ASTM D 5340-98.
5、 Chou, C.P., Wang, S.Y., and Tsai, C.Y. (2007), “Methodology of Applying Heavy Weight Deflectometer for the Calculation of Runway Pavement Classification Number,” CD-ROM, Presented at the 86th Annual Meeting of the Transportation Research Board, Washington, D.C., January 21~25.
6、 FAA (1995), “Airport Pavement Design and Evaluation.” Advisory Circular AC 160/5320-6D, U.S. Dept. of Transportaion, Federal Aviation Administration.
7、 FAA (1995),“Airport Pavement Design for Boeing 777.” Advisory Circular AC 160/5320-16 . U.S. Dept. of Transportaion, Federal Aviation Administration.
8、 FAA (2003), “Development of a Computer Program-COMFAA-for Calculating Pavement Thickness and Strength.”, U.S. Dept. of Transportaion, Federal Aviation Administration.
9、 FAA (2004), “Use of Nondestructive Testing in The Evaluation of Airport Pavement,” Advisory Circular 150/5370-11A, U.S. Dept. of Transportaion, Federal Aviation Administration.
10、 FAA (2006) “Standardized Method of Reporting Airport Pavement Strength.” Advisory Circular 150/5335-5A , U.S. Dept. of Transportaion, Federal Aviation Administration.
11、 FAA (2009a). Airport Pavement Design and Evaluation, Advisory Circular, AC 150/5320-6E, U.S. Dept. of Transportaion,Federal Aviation Administration.
12、 FAA (2009b) “A Draft of Standardized Method of Reporting Airport Pavement Strength - PCN.” Advisory Circular 150/5335-5B , U.S. Dept. of Transportaion, Federal Aviation Administration.
13、 Gucbilmez, E., and Yuce, R. (1995) “Mechanistic Evaluation of Rigid Airfield Pavements”, Journal of Transportation Engineering, ASCE, Vol. 121, No. 6, pp. 468-475.
14、 Hall, K. T. (1991), “Performance, Evaluation, and Rehabilitation of Asphalt - Overlaid Concrete Pavement”, Ph.D. Thesis, University of Illinois, Urbana, Illinois,.
15、 Huang, Y. H. (1993), Pavement Analysis and Design, Prentice-Hall, Inc., New Jersey.
16、 ICAO (1983), “Aerodrome Design Manual. Part3, Pavements.” 2nd Edition, International Civil Aviation Organization.
17、 ICAO (1995), “International Standards and Recommended Practices, Aerodromes”, Annex 14 to the Convention on International Civil Aviation, Volume 1 Aerodrome Design and Operations, 2nd Edition.
18、 Kenneth, J., and Debord, P.E. (1998), “Precise Methods for Estimating Pavement Classification Number,” Boeing Commercial Airplane Group Airport Technology Organization Report D6-82203.
19、 Lee, Y.H., Bair, J.H., Lee, C.T., Yen, S.T., and Lee, Y. M. (1997), “Modified Portland Cemnet Association Stress Analysis and Thickness Design Procedures.” Transportation Research Record 1568, TRB, National Research Council, Washington, D. C., pp. 77-88.
20、 Lee, Y. H. (1999), “TKUPAV: Stress Analysis and Thickness Design Program for Rigid Pavements,” Journal of Transportation Engineering, Vol. 125, No. 4, July/August, ASCE, pp. 338-346.
21、 Lee, Y. H. (1999), “Mechanistic Reappraisal of the Current Design Methodology for Rigid Airfield Pavements,” Transportation Research Record 1684, Journal of the Transportation Research Board, pp.90-100, November.
22、 Lee, Y. H.,. Liu, Y. B., Lin, J. D., and Ker, H. W. (2008), “A Robust Approach for the Evaluation of Airport Pavement Bearing Capacity and Determination of Pavement Classification Number,” CD-ROM, The 88th Annual Meeting of the Transportation Research Board, Washington, D.C., January 13~18.
23、 Roginski, M.J. (2008), “ PCN Determination – Issues and Concerns with Current Practice.” 十二座機場道面PCN檢測及評估專業服務案採購專家學者專題研討會,交通部民用航空局,台北。
24、 Roginski, M.J. (2009), “Developing a Better PCN-Industry Working Group Findings.” , FAA Great Lakes Region Airports Conference, Chicago, Illinois.
25、 PCA. (1973), “Design of Concrete Airport Pavements.”, Portland Cement Association.
26、 Parker, F., Barker, W.R., Gunkel, R.C. and Odom, E.C. (1979), “Development of a Structural Design Procedure for Rigid Airport Pavements”, Report No. FAA-RD-77-81, WES-TR-GL-79-4, Government Document No. TD 4.509:77-81, USA.
27、 Rollings, R.S. and Witczak, M. W. (1990), “Structural Deterioration Model for Rigid Airfield Pavements”. Journal of Transportation Engineering, ASCE, 116(4), pp. 479-491.
28、 Stet, M., and Beuving, E. (1993), “ICAO’s ACN-PCN Method and Aircraft Interaction.” Proceedings of ASCE conference..
29、 Stet, M. and Verbeek, J. (2005), “The PCN Runway Strength Rating and Load Control System” 1st European Airport Pavement Workshop, CROW.
30、 Yuan, J., and Mooney, M.A. (2003), “Development of adaptive performance models for Oklahoma airfield pavement management system ” TRB 2003 Annual Meeting CD-ROM.
31、 白建華 (1997),「剛性鋪面回算程式之建立—溫氏基礎基礎模式」,碩士論文,淡江大學土木工程學系,淡水,台北。
32、 交通部民用航空局 (2005),「中正國際機場道面整建策略及評估計畫」,交通部民用航空局,台北。
33、 交通部民用航空局 (2009a),「十二座機場道面PCN值檢測及評估之專業服案-臺北國際航空站檢測評估報告」,交通部民用航局,台北。
34、 交通部民用航空局 (2009b),「十二座機場道面PCN值檢測及評估之專業服案-高雄國際航空站檢測評估報告」,交通部民用航局,台北。
35、 李朝聰 (1997),「剛性鋪面回算程式之建立—彈性固體基礎模式」,碩士論文,淡江大學土木工程學系,淡水,台北。
36、 李英豪、顏少棠、鄭品恭、郭孟齊、張貴祿 (1998),「機場剛性鋪面厚度設計程式之建立」,期末報告,國科會計畫編號NSC87-2218-E-032-007,淡江大學。
37、 李英豪、洪政乾、盧中強、顏少棠 (2004),「鋪面路網資料庫架構與維修管理策略最佳化芻議」,鋪面工程,中華鋪面工程學會會刊,第二卷第三期,第 20-38頁。
38、 李明、李怡萱 (2007),「FAA反算程式BAKFAA之回算與應用」,鋪面落重撓度儀檢測反算及應用研習會論文集,台北。
39、 吳炘達、李英豪、顏少棠 (2003),「剛性鋪面三維有限元素參數分析與驗證」,中華民國第二十七屆全國力學會議,論文輯與光碟,成功大學,台南市。
40、 林惠玲、陳正倉 (2001),「統計學-方法與應用」,雙葉書廊。
41、 林士群 (2006),「以落重式撓度儀FWD評估機場道面PCN值」,中華道路季刊,第四十五卷,第一期,第87-96頁。
42、 林佳慧、李英豪 (2007),「鋪面回算之方法與應用」,鋪面落重撓度儀檢測反算及應用研習會論文集,台北,第2-1至2-15頁。
43、 周家蓓、陳靖翔 (2007),「落重撓度儀施測荷重範圍及堅硬層對反算結果之影響」,鋪面落重撓度儀檢測反算及應用研習會論文集,台北,第4-1至4-15頁。
44、 胡光復 (2007),「混合式基因演算法於鋪面落重撓度試驗動力回算分析之研究」,博士論文,淡江大學土木工程學系,淡水,台北。
45、 陳建桓 (1994),「由鋪面撓度值回算鋪面彈性模數的理論研究」,碩士論文,淡江大學土木工程學系,淡水,台北。
46、 陳靖翔 (2006),「落重撓度儀檢測荷重與堅硬層深度對反算分析之影響」,國立台灣大學土木工程研究所碩士論文,台北。
47、 許瑞升 (1999),「荷重傳遞效應與溫度翹曲對剛性鋪面回算影響之研究」,碩士論文,淡江大學土木工程學系,淡水,台北。
48、 陳怡先、周家蓓 (2006),「機場道面結構強度評估與PCN值分析」,中華道路季刊,第四十五卷,第二期,第79-90頁。
49、 陳怡先 (2007),「道面落重撓度檢測分析實務與機場PCN分析」, 鋪面落重撓度儀檢測反算及應用研習會論文集,台北,第6-1至6-13頁。
50、 郭振銘 (2007),「如何面對落重撓度儀檢測反算結果」,鋪面落重撓度儀檢測反算及應用研習會論文集,台北,第8-1至8-7頁。
51、 歐陽睿 (2008),「機場道面指數自動化分析之研究」,碩士論文,國立台灣大學土木工程學系, 台北。
52、 鐘偉逞 (2000),「應用落重式撓度儀觀測路面結構強度之研究」,碩士論文,國立中央大學土木工程學系,中壢,桃園。