跳到主要內容

簡易檢索 / 詳目顯示

研究生: 卓沛妤
Pei-Yu Cho
論文名稱: Uncovering Internet Armies on PTT
指導教授: 許富皓
Fu-Hau Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 35
中文關鍵詞: 網軍偵測PTT機器學習
外文關鍵詞: Internet army detection, PTT, machine learning
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於網路平台的大幅擴張,網軍(Internet army)這個工作也隨之
    增加,公關公司會付錢給學生或無工作者,讓他們發文或回覆
    來影響輿論風向。
    PTT 在台灣是相當大的網路平台,由於其匿名性以及能見度
    高,大量的網軍因此將這個平台視為主要的攻擊對象,許多網
    軍會針對特殊議題進行帶風向。
    因此,找到一種方法來偵測匿名平台中的網軍是很重要的議
    題。在此篇研究中,I.A.D 系統針對網軍進行分析獲得數個網
    軍的特徵,並藉由網軍特徵建立預測模型,使系統能夠判斷使
    用者是否是網軍。


    As the expansion of online social network, the occupation number of Internet
    army has increased. Students or unemployed post some article or reply to get
    paid by public relationship company, who are also known as paid poster,
    would impact peoples’ opinions.
    In Taiwan, PTT is such a large platform with anonymity and visibility.
    Because of influence of PTT, it has become a main target of Internet armies.
    Therefore, it is an important issue to find out a method to detect Internet
    armies on anonymous platform. In this research, I.A.D. system(Internet
    Armies Detection) analyze and find out some the features of Internet army. In
    addition, I.A.D. also build predicted models by features of Internet army. This
    makes the system to identify whether a user is Internet army or not.

    中文摘要………………………………………………………………………………….i Abstract………………………………………………………………………………ii Content………………………………………………………………………………….iii 1. Intrduction…………………………………………………………………………….1 1.1 Research Motivation ………….……..……….…………………………………..….3 1.2 Contribution………….……..……….…………………..…………………..….4 2. Background…………………………………………………………………………….5 2.1 Internet army………….……..……….…………………..…………………..….5 2.2 PTT Bulletin Board System…..……….…………………..…………………..….6 3. Related work…………………………………………………………………………….9 3.1 Internet Army Detection………….……..……….……………………………..….9 3.2 Fake Account Detection…….……..……..….……………………………..….10 3.2.1 Feature-based detection….……..……..….……………………………..….10 3.2.2 Graph-based approaches: ….……..……..….……………….………..….11 4. Methodology………………………………………………………………………….12 4.1 System Architecture…….……..……..….……………………………..….12 4.2 System Execution Flow…….……..……..….……………………………..….13 4.2.1 Data collection….……..………..….……………….………..….16 iv 4.2.2 Manual Identification….……..……..….……………….………..….16 4.2.3 Experiment….……..……………….……………….………..….17 5. Evaluation………………………………………………………………………….19 5.1 Feature Analysis…….……..……..….……………………………..….19 5.1.1 Average Interval Time….……..……..…...……………….………..….19 5.1.2 Number of Replies….……..……..……..……………….………..….20 5.1.3 Board Weight….……..……..………………………….………..….21 5.1.4 Reply to Article Time….……..……..….……………….………..….22 5.2 Identify Internet armies…….……..……..….……………………………..….23 5.2.1 Experiment result….……..……..….……………….………..….23 6. Conclusion………………………………………………………………………….25 Reference………………………………………………………………………….26

    1. https://www.bbc.com/news/election-us-2020-54811410
    2. https://www.usnews.com/news/politics/articles/2021-05-26/russia-still-largestdriver-of-disinformation-on-social-media-facebook-report-finds
    3. Cheng Chen, Kui Wu ,Venkatesh Srinivasan ,Xudong Zhang. ”Battling the Internet
    Water Army: Detection of Hidden Paid Posters “ in 2013 IEEE/ACM International
    Conference on Advances in Social Networks Analysis and Mining
    4. Guirong Chen, Wandong Cai, Jiuming Huang, Xianlong Jiao.” Uncovering and
    Characterizing Internet Water Army in Online Forums ” in 2016 IEEE First
    International Conference on Data Science in Cyberspace
    5. A. E. Azab, A. M. Idrees, M. A. Mahmoud, and H. Hefny, "Fake Account
    Detection in Twitter Based on Minimum Weighted Feature set," International
    Journal of Computer, Electrical, Automation, Control and Information Engineering,
    vol. 10, no. 1, pp. 13-18, 201
    6. S. Crescia, R. D. Pietrob, M. Petrocchia, A. Spognardia and M. Tesconia, "Fame
    for sale: efficient detection of fake Twitter followers," Decision Support Systems,
    vol. 80, pp. 56-71, 2015.
    7. S. Khaled, H. M. O. Mokhtar, and N. El-Tazi, "Detecting Fake Accounts on Social
    Media," in 2018 IEEE International Conference on Big Data (Big Data), Seattle,
    WA, USA, 2018.
    27
    8. A. Gupta and R. Kaushal, "Towards Detecting Fake User Accounts in Facebook,"
    2017
    9. Sarah Khaled, Neamat El-Tazi, Hoda M. O. Mokhtar. “Detecting Fake Accounts on
    Social Media ”2018 IEEE International Conference on Big Data (Big Data)
    10. Qiang Cao, Xiaowei Yang, Jieqi Yu, Christopher Palow. “Uncovering Large
    Groups of Active Malicious Accounts in Online Social Networks” Proceedings of
    the 2014 ACM SIGSAC Conference on Computer and Communications Security.
    November 2014 Pages 477–488
    11. Hacking Financial Market. 2016. http://goo.gl/4AkWyt
    12. Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song. 2011. Design
    and evaluation of a real-time URL spam filtering service. In IEEE S & P
    13. Quinlan, J. R. (1987). "Simplifying decision trees". International Journal of ManMachine Studies. 27 (3): 221–234. CiteSeerX 10.1.1.18.4267.
    14. L. Breiman, "Random forests," Machine Learning, 2001.
    15. T. Joachims, Learning to Classify Text Using Support Vector Machines: Methods,
    Theory, and Algorithms. Boston: Kluwer Academic Publishers, 2002.
    16. L. Breiman, "Random forests," Machine Learning, 2001.
    17. Manuel Fern_andez Delgado, Eva Cernadas, Sen_en Barro, and Dinani Amorim,
    "Do we Need Hundreds of Classifiers to Solve Real World Classification
    Problems?," Journal of Machine Learning Research, vol. 15, pp. 3133-3181, 2014.
    18. Lior Rokach and Oded Maimon, Data Mining and Knowledge Discovery
    Handbook - Chapter 9 (Decision Trees), Oded Maimon and Lior Rokach, Eds.,
    2005.
    19. T. Joachims, Learning to Classify Text Using Support Vector Machines: Methods,
    Theory, and Algorithms. Boston: Kluwer Academic Publishers, 2002

    QR CODE
    :::