跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳定穎
Ting-ying Chen
論文名稱: H∞ 連續模糊系統之控制設計-寬鬆穩定條件∞
SOS-based H∞ Fuzzy Controller Desging-Relaxation Method
指導教授: 羅吉昌
Lo, Ji-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 76
中文關鍵詞: 平方和Takagi-Sugeno模糊系 統H1控制非二次穩定參數相依齊次多項式尤拉齊次多項式定理
外文關鍵詞: Sum of squares, T-S fuzzy systems, H1 control, Non-quadratic stability, HPPD, Euler's Theorem for Homogeneous Functions
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  李亞普諾夫能量函數V (x)對時間t微分會產生Q(x)微分項的
    過程,為了要避免這個複雜的問題,則引入尤拉齊次多項式定理,本
    論文主要在研究在連續模糊控制系統下的非二次穩定(Non-quadratic
    stability),且加入H1性能指標的觀念,亦即非二次穩定李亞普諾
    夫(Lyapunov function)能量函數V (x) = xT adj(Qz(x))x,而藉由尤拉
    齊次多項式定理(Euler's Theorem for Homogeneous Functions)可導
    出H1控制之李亞普諾夫不等式檢測穩定矩陣,輔以平方和(Sum of
    square)去檢驗其連續模糊系統之穩定條件,最後去模擬例子,來證明
    此方法之正確性
    i


    Lyapunov energy function V (x) for time di erential will gener-
    ate Q(x) process derivative term, in order to avoid this complex is-
    sue, the lead to Euler's homogeneous polynomial theorem, this the-
    sis research in continuous fuzzy control system nonquadratic stable
    (Non-quadratic stability), and added performance concept of H1 ,
    namely non-quadratic Lyapunov stability (Lyapunov function) energy
    function V (x) = xT adj(Qz(x))x , and by Euler homogeneous poly-
    nomial Theorem (Euler's Theorem for Homogeneous Functions) can
    be exported H1 control of Lyapunov inequality detection stabilizing
    matrix, supplemented square and (Sum of square) to test its stability
    conditions of continuous fuzzy systems, and nally to simulate exam-
    ple, to prove the correctness of this approach
    ii

    中文摘要.......................................................................................... i 英文摘要.......................................................................................... ii 謝誌................................................................................................. iii 目錄................................................................................................. iv 圖目錄.............................................................................................. vi 一、背景介紹..................................................................... 1 1.1 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . 3 1.3 論文結構. . . . . . . . . . . . . . . . . . . . . . . 5 1.4 符號標記. . . . . . . . . . . . . . . . . . . . . . . 6 1.5 預備定理. . . . . . . . . . . . . . . . . . . . . . . 8 二、基礎定理..................................................................... 9 2.1 H1 控制定理介紹. . . . . . . . . . . . . . . . . . . 9 2.2 尤拉齊次多項式定理(Euler's homogeneity theorem) 10 2.3 李亞普諾夫定理(Lyapunov theorem) . . . . . . . . 14 2.4 蕭轉換定理(Schur complement) . . . . . . . . . . . 14 三、連續系統架構..............................................................16 3.1 連續系統架構介紹. . . . . . . . . . . . . . . . . . 16 3.2 連續模糊系統控制加入寬鬆條件之檢測條件. . . . . 17 3.3 H1連續模糊系統控制加入寬鬆條件之檢測條件. . . 22 3.4 建模技巧. . . . . . . . . . . . . . . . . . . . . . . 27 四、平方和檢測條件..........................................................30 4.1 平方和檢驗法. . . . . . . . . . . . . . . . . . . . . 30 4.2 平方和檢驗法之控制連續模糊系統檢測條件. . . . . 33 4.3 平方和檢驗法之H1控制連續模糊系統檢測條件. . . 35 iv 五、Matlab電腦模擬.........................................................38 5.1 例題一. . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2 例題二. . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3 例題三. . . . . . . . . . . . . . . . . . . . . . . . . 47 六、結論與未來方向..........................................................52 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2 未來研究方向. . . . . . . . . . . . . . . . . . . . . 53 附錄一..............................................................................................54 A.1 波雅定理. . . . . . . . . . . . . . . . . . . . . . . 54 A.2 增加激發強度之冪次. . . . . . . . . . . . . . . . 54 A.3 波雅定理之穩定性檢測條件. . . . . . . . . . . . . 56

    [1] T. Takagi and M. Sugeno. Fuzzy identi cation of systems and its
    applications to modelling and control. IEEE Trans. Syst., Man,
    Cybern., 15(1):116{132, January 1985.
    [2] M. Sugeno and G.T. Kang. Structure identi cation of fuzzy
    model. Fuzzy Set and Systems, 28:15{33, 1988.
    [3] K. Tanaka and M. Sugeno. Stability analysis and design of fuzzy
    control systems. Fuzzy Set and Systems, 45:135{156, 1992.
    [4] W.M. Haddad and D.S. Bernstein. Explicit construction of
    quadratic Lyapunov functions for the small gain, positive, cir-
    cle and Popov theorems and their application to robust stability.
    Part II: discrete-time theory. Int'l J. of Robust and Nonlinear
    Control, 4:249{265, 1994.
    [5] P.A. Parrilo. Structured Semide nite Programs and Semialgebraic
    Geometry Methods in Robustness and Optimization. PhD thesis,
    Caltech, Pasadena, CA., May 2000.
    [6] S. Prajna, A. Papachristodoulou, and P. Parrilo. Introducing
    SOSTOOLS: a general purpose sum of squares programming
    solver. In Proc of IEEE CDC, pages 741{746, Montreal, Ca, July
    2002.
    [7] S. Prajna, A. Papachristodoulou, and et al. New developments on
    sum of squares optimization and SOSTOOLS. In Proc. the 2004
    American Control Conference, pages 5606{5611, 2004.
    60
    [8] A. Sala and C. Arino. Polynomial fuzzy models for nonlinear
    control: A Taylor series approach. IEEE Trans. Fuzzy Systems,
    17(6):1284{1295, December 2009.
    [9] H. Ichihara. Observer design for polynomial systems using convex
    optimization. In Proc. of the 46th IEEE CDC, pages 5347{5352,
    New Orleans, LA, December 2007.
    [10] J. Xu, K.Y. Lum, and et al. A SOS-based approach to resid-
    ual generators for discrete-time polynomial nonlinear systems. In
    Proc. of the 46th IEEE CDC, pages 372{377, New Orleans, LA,
    December 2007.
    [11] J. Xie, L. Xie, and Y. Wang. Synthesis of discrete-time nonlinear
    systems: A SOS approach. In Proc. of the 2007 American Control
    Conference, pages 4829{4834, New York, NY, July 2007.
    [12] K. Tanaka, H. Yoshida, and et al. A sum of squares approach
    to stability analysis of polynomial fuzzy systems. In Proc. of the
    2007 American Control Conference, pages 4071{4076, New York,
    NY, July 2007.
    [13] K. Tanaka, H. Yoshida, and et al. Stabilization of polynomial
    fuzzy systems via a sum of squares approach. In Proc. of the
    22nd Int'l Symposium on Intelligent Control Part of IEEE Multi-
    conference on Systems and Control, pages 160{165, Singapore,
    October 2007.
    [14] H. Ichihara and E. Nobuyama. A computational approach to
    state feedback synthesis for nonlinear systems based on matrix
    sum of squares relaxations. In Proc. 17th Int'l Symposium on
    Mathematical Theory of Network and Systems, pages 932{937,
    Kyoto, Japan, 2006.
    61
    [15] C.W.J. Hol and C.W. Scherer. Sum of squares relaxations for
    polynomial semide nite programming. In Proc.of MTNS, pages
    1{10, 2004.
    [16] E. Kim and H. Lee. New approaches to relaxed quadratic stability
    condition of fuzzy control systems. IEEE Trans. Fuzzy Systems,
    8(5):523{534, October 2000.
    [17] X.D. Liu and Q.L. Zhang. New approaches to H1 controller
    designs based on fuzzy observers for T-S fuzzy systems via LMI.
    Automatica, 39:1571{1582, June 2003.
    [18] C.H. Fang, Y.S. Liu, S.W. Kau, L. Hong, and C.H. Lee. A new
    LMI-based approach to relaxed quadratic stabilization of T-S
    fuzzy control systems. IEEE Trans. Fuzzy Systems, 14(3):386{
    397, June 2006.
    [19] H.O. Wang, K. Tanaka, and M.F. Grin. An approach to fuzzy
    control of nonlinear systems: stability and design issues. IEEE
    Trans. Fuzzy Systems, 4(1):14{23, February 1996.
    [20] M. Johansson, A. Rantzer, and K.-E. Arzen. Piecewise quadratic
    stability of fuzzy systems. IEEE Trans. Fuzzy Systems, 7(6):713{
    722, December 1999.
    [21] G. Feng. Controller synthesis of fuzzy dynamic systems based on
    piecewise Lyapunov functions. IEEE Trans. Circuits and Syst. I:
    Fundamental Theory and Applications, 11(5):605{612, 2003.
    [22] D. Sun G. Feng, C. Chen and Y. Zhu. H1 controller synthesis
    of fuzzy dynamic systems based on piecewise Lyapunov functions
    and bilinear matrix inequalities. IEEE Trans. Circuits and Syst.
    I: Fundamental Theory and Applications, 13(1):94{103, 2005.
    [23] T. M. Guerra and L. Vermeiren. LMI-based relaxed nonquadratic
    stabilization conditions for nonlinear systems in the Takagi-
    Sugeno's form. Automatica, 40:823{829, 2004.

    QR CODE
    :::