| 研究生: |
呂伊凡 Irfan Prasetyo Loekito |
|---|---|
| 論文名稱: |
固著於矽膠之枯草芽孢桿菌對 ECC 耐久性能的影響 The influence of bacillus subtilis immobilized in silica gel on durability performance of ECC |
| 指導教授: |
黃偉慶
Huang, Wei-Hsing |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 枯草芽孢桿菌 、耐久性 、氯化物擴散 、腐蝕 、ECC |
| 外文關鍵詞: | ECC, Durability, Bacillus Subtilis, Chloride Diffusion, Corrosion |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工程水泥基複合材料(ECC)作為高性能材料,通過改變粉煤灰含量、添加新型纖維、添加強添加劑化合物、摻入殺菌劑等多種方法來提高性能。 開發ECC技術的目的不僅僅是提高機械性能,還包括確保耐久性能。 用於評估耐久性能的特徵之一是使用壽命能力。 為了延長ECC的使用壽命,必須提高一些性能,例如氯化物侵入和耐腐蝕性。 為了實現高耐久性能,本研究正在研究將枯草芽孢桿菌摻入 ECC 中。 為了使細菌在 ECC 混合物的惡劣環境中存活,在固定過程中使用了矽膠。 在本研究中,細菌固定化矽膠的含量從 5%、10% 和 15% 不等。 結果表明,利用固定在矽膠中的枯草芽孢桿菌提高了耐久性能,尤其是在乾燥收縮、氯化物擴散性和耐腐蝕性方面。
此外,ECC 的使用壽命可以通過使用本研究的表面氯化物濃度和表觀擴散係數來估算。 使用有效時間方法確定時間相關的減少係數 m。 由於計算的擴散係數隨時間的減少對使用壽命預測有很大影響,因此還必須知道擴散和時間相關的減少係數是如何獲得的。
As the high-performance material, engineered cementitious composite (ECC) has developed with many methods to improve the properties, such as changing the fly ash content, adding new type of fiber, adding strong additive compound, and incorporating with bacteria agent. The objective of developing ECC technology was not just about improving mechanical qualities, but also about ensuring the durability performances. One of the characteristics used to assess durability performance is service life ability. To extend the service life of ECC, some properties have to be improved, such as chloride ingress and corrosion resistance. In order to achieve high durability performance, the incorporation of bacillus subtilis into the ECC is being examined in this study. To keep bacteria alive in the harsh environment of the ECC mixture, silica gel is employed in the immobilization procedure. In this study, the content of bacteria immobilized silica gel varies from 5%, 10%, and 15%. The results reveal that utilizing bacillus subtilis immobilized in silica gel increases the durability performances, especially on drying shrinkage, chloride diffusivity, and corrosion resistance.
Furthermore, the service life of ECC can be estimated by using surface chloride concentration and apparent diffusion coefficient from this research. The time-dependant reduction coefficient, m, was determined using effective time methods. Since the reduction of calculated diffusion coefficient with time has great impact on service life prediction, it is imperative to also know how the diffusion and time-dependant reduction coefficient were obtained.
[1] G.H. Koch, M.P.H. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer, Corrosion Costs and Preventive Strategies in the United States, No. FHWA-RD-01-156, R315-01. United States. Federal Highway Administration, 2002.
[2] E. Pereira, E. Br, A. Resende, M.H.F. de Medeiros, L.C. Meneghetti, Chloride accelerated test: influence of silica fume, water/binder ratio and concrete cover thickness, Revista IBRACON de Estruturas e Materiais 6 (2013): 561-581.
[3] V.C. Li, Engineered Cementitious Composites (ECC): Material, structural, and durability performance. , Concrete Construction Engineering Handbook; Nawy, E., Ed.; CRC Press: Boca Raton, FL, USA,. (2008).
[4] v. Wiktor & H.M. Jonkers, Determination of the crack self-healing capacity of bacterial concrete, in: Concrete Solutions 2011, 2012: pp. 331–334.
[5] N. Nain, R. Surabhi, N. V. Yathish, V. Krishnamurthy, T. Deepa, S. Tharannum, Enhancement in strength parameters of concrete by application of Bacillus bacteria, Constr Build Mater. 202 (2019) 904–908. https://doi.org/10.1016/j.conbuildmat.2019.01.059.
[6] J. Wang, K. van Tittelboom, N. de Belie, W. Verstraete, Use of silica gel or polyurethane immobilized bacteria for self-healing concrete, Constr Build Mater. 26 (2012) 532–540. https://doi.org/10.1016/j.conbuildmat.2011.06.054.
[7] J. García-González, D. Rodríguez-Robles, J. Wang, N. de Belie, J.M. Morán-del Pozo, M.I. Guerra-Romero, A. Juan-Valdés, Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate, Constr Build Mater. 154 (2017) 1015–1023. https://doi.org/10.1016/j.conbuildmat.2017.08.039.
[8] Y.S. Wang, L. Liu, Q. Fu, J. Sun, Z.Y. An, R. Ding, Y. Li, X.D. Zhao, Effect of Bacillus subtilis on corrosion behavior of 10MnNiCrCu steel in marine environment, Sci Rep. 10 (2020). https://doi.org/10.1038/s41598-020-62809-y.
[9] R.V.S. Anna V. Saetta and Renato V. Vitaliani, Analysis of Chloride Diffusion into Partially Saturated Concrete, ACI Mater J. 90 (n.d.). https://doi.org/10.14359/3874.
[10] H.E. Townsend, H.J. Cleary, L. Allegra, Breakdown of Oxide Films on Steel Exposed to Chloride Solutions, Corrosion 37.7 (1981): 384-391.
[11] U. Angst, B. Elsener, C.K. Larsen, Ø. Vennesland, Critical chloride content in reinforced concrete - A review, Cem Concr Res. 39 (2009) 1122–1138. https://doi.org/10.1016/j.cemconres.2009.08.006.
[12] K. Tuutti, Corrosion of Steel in Concrete, Swedish Cement and Concrete Research Institute, Stockholm, 1982.
[13] C. Qing Li, Reliability Based Service Life Prediction of Corrosion Affected Concrete Structures, Journal of Structural Engineering. 130 (2004) 1570–1577. https://doi.org/10.1061/(asce)0733-9445(2004)130:10(1570).
[14] Stratmann, Müller, and J. Müller. "The mechanism of the oxygen reduction on rust-covered metal substrates." Corrosion Science 36.2 (1994): 327-359.
[15] A. Boddy, E. Bentz, A. Thomas, R.D. Hooton, An overview and sensitivity study of a multimechanistic chloride transport model, Cement and concrete research 29.6 (1999): 827-837.
[16] Martys, Nicos S. Survey of concrete transport properties and their measurement. National Institute of Standards and Technology, 1996.
[17] Wong, S. F., et al. "Study of water movement in concrete." Magazine of Concrete Research 53.3 (2001): 205-220.
[18] Stanish, K. D., R. D. Hooton, and M. D. A. Thomas. "Testing the chloride penetration resistance of concrete: a literature review." (1997).
[19] Stanish, Kyle, and Michael Thomas. "The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients." Cement and Concrete Research 33.1 (2003): 55-62.
[20] M. Nokken, A. Boddy, R.D. Hooton, M.D.A. Thomas, Time dependent diffusion in concrete-three laboratory studies, Cem Concr Res. 36 (2006) 200–207. https://doi.org/10.1016/j.cemconres.2004.03.030.
[21] Stanish, K. D., R. D. Hooton, and M. D. A. Thomas. "Testing the chloride penetration resistance of concrete: a literature review." (1997).
[22] ASTM Designation: C1556 − 11a Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion 1, (n.d.). https://doi.org/10.1520/C1556-11AR16.
[23] American Association of State Highway and Transportation Officials, Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration, T259, in: AASHTO Standards.
[24] Sahmaran, Mustafa, Mo Li, and Victor C. Li. "Transport properties of engineered cementitious composites under chloride exposure." ACI Materials Journal 104.6 (2007): 604-611.
[25] Peng Qiyin, Comparison of methods for estimating the chloride ion intrusion profile and service life of barrier concrete, National Central University, 2015.
[26] De Muynck, Willem, Nele De Belie, and Willy Verstraete. "Improvement of concrete durability with the aid of bacteria." Proceedings of the first international conference on self healing materials. Springer, 2007.
[27] W. Chalee, C. Jaturapitakkul, P. Chindaprasirt, Predicting the chloride penetration of fly ash concrete in seawater, Marine Structures. 22 (2009) 341–353. https://doi.org/10.1016/j.marstruc.2008.12.001.
[28] Life-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Cost of Reinforced Concrete Exposed to Chlorides, 2020.
[29] V.C.L. and C.A. Mustafa Sahmaran, Corrosion Resistance Performance of Steel-Reinforced Engineered Cementitious Composite Beams, ACI Mater J. 105 (2008).
[30] Y.S. Wang, L. Liu, Q. Fu, J. Sun, Z.Y. An, R. Ding, Y. Li, X.D. Zhao, Effect of Bacillus subtilis on corrosion behavior of 10MnNiCrCu steel in marine environment, Sci Rep. 10 (2020). https://doi.org/10.1038/s41598-020-62809-y.
[31] S.K. Karn, G. Fang, J. Duan, Bacillus sp. acting as dual role for corrosion induction and corrosion inhibition with carbon steel (CS), Front Microbiol. 8 (2017). https://doi.org/10.3389/fmicb.2017.02038.
[32] M.L. Gana, S. Kebbouche-Gana, A. Touzi, M.A. Zorgani, A. Pauss, H. Lounici, N. Mameri, Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry, J Ind Microbiol Biotechnol. 38 (2011) 391–404. https://doi.org/10.1007/s10295-010-0887-2.
[33] M. Seifan, A.K. Sarmah, A.K. Samani, A. Ebrahiminezhad, Y. Ghasemi, A. Berenjian, Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles, Appl Microbiol Biotechnol. 102 (2018) 4489–4498. https://doi.org/10.1007/s00253-018-8913-9.
[34] R. Siddique, N.K. Chahal, Effect of ureolytic bacteria on concrete properties, Constr Build Mater. 25 (2011) 3791–3801. https://doi.org/10.1016/j.conbuildmat.2011.04.010.
[35] A. Heyer, F. D’Souza, C.F.L. Morales, G. Ferrari, J.M.C. Mol, J.H.W. de Wit, Ship ballast tanks a review from microbial corrosion and electrochemical point of view, Ocean Engineering. 70 (2013) 188–200.
[36] AASHTO, Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials, T260-1, in: AASHTO Standards, 2001.
[37] Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete 1, (n.d.). https://doi.org/10.1520/C1152_C1152M-20.
[38] Ahmad, Shamsad. "Techniques for inducing accelerated corrosion of steel in concrete." Arabian Journal for Science and Engineering 34.2 (2009): 95.
[39] Q. Li, X. Jin, D. Yan, C. Fu, J. Xu, Study of wiring method on accelerated corrosion of steel bars in concrete, Constr Build Mater. 269 (2021) 121286. https://doi.org/10.1016/j.conbuildmat.2020.121286.
[40] Sahmaran, Mustafa, et al. "Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites." ACI Materials Journal 106.3 (2009): 308.
[41] M. Sahmaran, M. Lachemi, K.M.A. Hossain, R. Ranade, V.C. Li, Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites, ACI Mater J. 106 (2009) 308.
[42] T. Thiel, Streaking microbial cultures on agar plates, Science in the Real World: Microbes in Action. (1999).
[43] S. Jena, B. Basa, K.C. Panda, N.K. Sahoo, Impact of Bacillus subtilis bacterium on the properties of concrete, Mater Today Proc. 32 (2020) 651–656.
[44] M.P. Smitha, D. Suji, M. Shanthi, A. Adesina, Application of bacterial biomass in biocementation process to enhance the mechanical and durability properties of concrete, Cleaner Materials. 3 (2022) 100050.
[45] N. Otsuki, S. Nagataki, K. Nakashita, Evaluation of the AgNO3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials, Constr Build Mater. 7 (1993) 195–201.
[46] L. V. Real, D.R.B. Oliveira, T. Soares, M.H.F. Medeiros, AgNO3 spray method for measurement of chloride penetration: the state of art, ALCONPAT Journal. 5 (n.d.) 141–151. https://doi.org/10.21041/ra.
[47] C. V. Pontes, G.C. Réus, E.C. Araújo, M.H.F. Medeiros, Silver nitrate colorimetric method to detect chloride penetration in carbonated concrete: How to prevent false positives, Journal of Building Engineering. 34 (2021). https://doi.org/10.1016/j.jobe.2020.101860.
[48] NT BUILD 492. "Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments." NORDTEST (1999).
[49] L. Song, W. Sun, J. Gao, Time dependent chloride diffusion coefficient in concrete, Journal of Wuhan University of Technology-Mater. Sci. Ed. 28 (2013) 314–319. https://doi.org/10.1007/s11595-013-0685-6.
[50] H.-W. Song, C.-H. Lee, K.Y. Ann, Factors influencing chloride transport in concrete structures exposed to marine environments, Cem Concr Compos. 30 (2008) 113–121. https://doi.org/10.1016/j.cemconcomp.2007.09.005.
[51] T. Uomoto, S. Misra, Behavior of concrete beams and columns in marine environment when corrosion of reinforcing bars takes place, Special Publication. 109 (1988) 127–146.
[52] J. Feng, Y. Su, C. Qian, Coupled effect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete, Constr Build Mater. 228 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116810.
[53] J. Feng, Y. Su, C. Qian, Coupled effect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete, Constr Build Mater. 228 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116810.
[54] Y. Al-Najjar, S. Yeşilmen, A.M. Al-Dahawi, M. Şahmaran, G. Yıldırım, M. Lachemi, L. Amleh, Physical and Chemical Actions of Nano-Mineral Additives on Properties of High-Volume Fly Ash Engineered Cementitious Composites, ACI Mater J. 113 (2016). https://doi.org/10.14359/51689114.
[55] J. García-González, D. Rodríguez-Robles, J. Wang, N. de Belie, J.M. Morán-del Pozo, M.I. Guerra-Romero, A. Juan-Valdés, Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate, Constr Build Mater. 154 (2017) 1015–1023. https://doi.org/10.1016/j.conbuildmat.2017.08.039.
[56] N. Nain, R. Surabhi, N.V. Yathish, V. Krishnamurthy, T. Deepa, S. Tharannum, Enhancement in strength parameters of concrete by application of Bacillus bacteria, Constr Build Mater. 202 (2019) 904–908. https://doi.org/10.1016/j.conbuildmat.2019.01.059.
[57] J. Wang, K. van Tittelboom, N. de Belie, W. Verstraete, Use of silica gel or polyurethane immobilized bacteria for self-healing concrete, Constr Build Mater. 26 (2012) 532–540. https://doi.org/10.1016/j.conbuildmat.2011.06.054.
[58] M. de Rooij, K. van Tittelboom, N. de Belie, E. Schlangen, Self-healing phenomena in cement-Based materials: state-of-the-art report of RILEM technical committee 221-SHC: self-Healing phenomena in cement-Based materials, Springer, 2013.
[59] Syed Ayub Azher, A prediction model for the residual flexural strength of corroded reinforced concrete beams, King Fahd University of Petroleum and Mineral, 2005.
[60] F. P. Ijsseling, Application of Electrochemical Methods of Corrosion Rate Determination to System Involving Corrosion Product Layers, British Corrosion Journal, London. 21 (1986) 95–101.
[61] P.B. YuBun Auyeung and Lan Chung, Bond Behavior of Corroded Reinforcement Bars, ACI Mater J. 97 (n.d.). https://doi.org/10.14359/826.
[62] B. van Belleghem, P. van den Heedeand, N. de Belie, Resistance to Chloride Penetration of Self-Healing Concrete with Encapsulated Polyurethane, in: 2016: pp. 1291–1300. https://doi.org/10.18552/2016/SCMT4D118.
[63] K.S. Yoo, S.Y. Jang, K.M. Lee, Recovery of chloride penetration resistance of cement-based composites due to self-healing of cracks, Materials. 14 (2021). https://doi.org/10.3390/ma14102501.